
An Empirical Study of Low-precision Training in Centralized and

Decentralized Architecture

Yucheng Lu 1 Jiaying Wang 1 Shangdi Yu 1

Abstract

Distributed computing and low-precision numer-

ical representation are two techniques used to

speed up computation-intensive machine learn-

ing tasks. They have been widely investigated

in systemic and algorithmic scope, respectively.

However, how we can effectively combine these

two techniques has not been well understood

in prior arts. In this paper, we aim to empiri-

cally investigate the effectiveness of employing

low-precision training in both centralized and de-

centralized architectures, with a combined con-

sideration on both system efficiency and statisti-

cal performance. We select two representative

machine learning tasks: logistic regression on

MNIST by training a linear classifier and im-

age classification on CIFAR-10 by training a 16-

layer VGG network. We make the following ob-

servations: 1) For both convex and non-convex

problems, aggressively quantizing the commu-

nication rarely affect the statistical performance

while can largely reduce the communication over-

head (up to 87.5%). 2) In non-convex prob-

lem, training with extremely low precision can

no longer achieve state-of-the-art performance.

These conclusions can be reference for applying

low-precision training in modern systems in the

future.

1. Introduction

In the recent decade, the coming of the so called ”infor-

mation age” has provided us unprecedented amount of in-

formation available that can be represented in a number

form on computer. Not surprisingly, to take advantage of

these data, people have been developing machine learning

methods and systems that are scalable and can handle large
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datasets. Due to the large data volume and increasing num-

ber of computation-intensive Machine Learning (ML) ap-

plications, scaling up ML tasks beyond a single machine

has been widely studied. In large-scale distributed ML sys-

tems, how workers communicate and coordinate is a crucial

design choice. To address this issue, researchers have been

investigating new system architectures. State-of-the-art dis-

tributed ML systems (e.g. Tensorflow, CNTK, MXNet)

are either using synchronous communication via Parame-

ter Servers (PS)/ AllReduce or asynchronous communica-

tion via PS (Hsu et al., 2011; Li et al., 2014). However, PS

architecture often suffers from congestion in the communi-

cation with central node and the straggler issue. To mitigate

these problems, researchers have been studying the decen-

tralized distributed training (DC) and found that DC has the

same convergence rate compared to PS, and can even out-

perform PS under certain system configuration (e.g. high-

latency or low-bandwidth network). (Lian et al., 2017)

Aside from system design, advanced training techniques

on precision variance are also emerging. Researchers have

provided sufficient and strong theoretical analysis on this

side. Some examples are loss scaling, HALP, and QSGD.

(Alistarh et al., 2017; De Sa et al., 2018) However, how we

can benefit from these techniques in a distributed system is

not well understood.

In this paper, we aim at investigating the effectiveness of

employing low-precision training in PS and DC architec-

tures. We select two representative models logistic regres-

sion and VGG, former a convex problem and latter a non-

convex problem, to demonstrate the performance of our

training scheme.

Our contributions in this paper can be summarized as fol-

lows:

• Provide an overview of the current distributed ma-

chine learning architecture and low-precision tech-

niques.

• Empirically investigate the effectiveness of low-

precision training in both centralized and decentral-

ized architectures considering both the system effi-

ciency and statistical performance.
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• Report the statistical results which could serve as a ref-

erence for applying low-precision training in modern

systems.

2. Related Work

Our paper focuses on the behavior of low-precision train-

ing in a distributed computing environment. Low-precision

training and inferencing can help limit the model size and

energy consumption while retaining the inference accu-

racy. Such techniques are necessary for special applica-

tions of neural network models such as using large Deep

Neural Networks (DNNs) on mobile and embedded de-

vices. Using low-precision without compromising accu-

racy is a challenging task and there have been numer-

ous works on this topic. Researchers have shown that

deep networks can be trained with fixed-point number and

a stochastic rounding scheme without too much degra-

dation in the classification accuracy.(Gupta et al., 2015)

Other advanced training techniques on precision variance,

such as loss scaling, HALP, and QSGD are also de-

veloped (Alistarh et al., 2017; De Sa et al., 2018). Re-

searchers have also tried to limit the model size and en-

ergy consumption from approaches such as weight quan-

tization and exploiting the hashing tricks. Recent works

of these other approaches include the deep compression

(Han et al., 2015), the HashedNets (Chen et al., 2015),

the knowledge distillation (Polino et al., 2018), the UNIQ

(Baskin et al., 2018), and the Probabilistic Binary Neural

Networks (Peters & Welling, 2018).

Our experiments are done using two popular machine

learning models: logistic regression and VGG networks.

The Very Deep Convolutional Networks developed by

the Visual Geometry Group (VGG network) is an effec-

tive model in image classification (Simonyan & Zisserman,

2014). There have been works that evaluated the per-

formance of low-precision training (Cai et al., 2017) and

mixed-precision training (Das et al., 2018) in variants of

VGG networks. Logistic regression has long been a very

popular technique in the machine learning community be-

cause of its simplicity and effectiveness in many appli-

cations. (Komarek & Moore, 2005; McLachlan, 2005;

Hosmer Jr et al., 2013) While there have been a lot of

works on how L1 and L2 regularization effect logsitic re-

gression, as far as we know people have not extensively

studied how low-precision training influences logistic re-

gression. Since logistic regression is equivalent to a linear

classifier, its model size is usually not a problem compared

to the huge model sizes of deep neural networks. However,

we can still benefit from the less communication overhead

in distributed training by using a low-precision scheme.

Researchers have investigated how limiting the precision

in distributed training can reduce the communication over-

head. For example, Wen et al. (2017) has developed the

TernGrad that uses ternary gradients and requires only three

numerical levels: -1, 0, and 1. land & Raj (2015) showed

that reducing the number of bits used to transmit parame-

ters can reduce the communication overhead while having

a beneficial effect on the training.

With the increasing need for large-scale machine learn-

ing applications, distributed training has become an ac-

tive area of research. A popular distributed machine learn-

ing framework is the parameter server framework where

data and workloads are distributed over worker nodes,

while the server nodes keep the shared parameters.(Li et al.,

2014) Recently, people have also proposed decentralized

distributed training algorithms,where workers can directly

connected with each other, that can achieve similar perfor-

mance with the centralized algorithms. (Lian et al., 2017)

As the section has demonstrated, a lot of work has been

done to understand training with precision variance and

adapt training to distributed environment. However, there

has not been much discussion on how low-precision train-

ing can be advantageous specifically in the distributed envi-

ronment. In this paper, we will focus on how exploiting dis-

tributed training and low-precision training affect the train-

ing accuracy and efficiency.

3. Methodology

Throughout this paper, we adopt stochastic rounding, an un-

biased rounding scheme widely used in low-precision train-

ing. The quantization function for stochastic rounding is

defined as

Q(x) = δ

{

⌊

x

δ

⌋

+ 1, p ≤ x

δ
−
⌊

x

δ

⌋

⌊

x

δ

⌋

, otherwise

where p ∈ [0, 1] is produced by a uniform random number

generator. This operator is non-deterministic, and rounds

its argument up with probability x

δ
−
⌊

x

δ

⌋

, and down other-

wise.

4. System Architecture

In this subsection, we will briefly introduce the state-of-the-

art design of architectures used to coordinate the workers.

In general, they can be classified into two categories: cen-

tralized and decentralized architecture. In this context, a

worker can refer to any type of computing unit such as CPU,

GPU, sensor, etc.

4.1. Centralized Architecture

In a centralized architecture, all the workers are discon-

nected from each other, and instead are connected to a

centralized server (Figure 1). The centralized server av-
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erages or sums up the intermediate results gathered from

the workers at the end of each iteration and sends back

the updated result to the workers (Hsu et al., 2011; Li et al.,

2014). Trained with sufficient iterations, the parameter on

the central node can converge to the optimum. Centralized

architecture is easy to monitor and implement; however, in

practice the centralized server always suffers from commu-

nication congestion when scaling up the workers. Besides,

the training progress can easily slow down if there is a re-

ally slow worker, namely the straggler issue.

Figure 1. An illustration of centralized architecture, where all the

workers push gradient to the centralized node and pull the updated

parameters.

4.2. Decentralized Architecture

To mitigate the communication congestion and the strag-

gler issue, researchers also investigated the decentralized

architecture. Instead of communicating with a central

server, all the workers communicate with adjacent or con-

nected workers to average intermediate results (Figure 2).

As such, all the workers will reach consensus and ap-

proach the optimum together. Decentralized architecture

addresses the two problems brought by centralized archi-

tecture, which are mentioned in the previous subsection.

However, decentralized architecture makes a trade-off by

consuming more bandwidth and handshakes in actual com-

munication.

5. Experiments

In this section, we empirically evaluate the performance of

several low-precision training strategies in centralized and

decentralized architectures on both convex and non-convex

problems. All the experiments are implemented using Py-

torch and run on NVIDIA P100 GPUs deployed on the

Google cloud platform.

Figure 2. An illustration of decentralized architecture, where all

the workers average its intermediate parameters with its adjacent

neighbors.

5.1. Experimental Setting

To generalize the results, we evaluate two representative

machine learning tasks, one with a convex objective and

the other with a non-convex objective.

Logistic Regression We use logistic regression with L2

regularization on MNIST dataset. The objective function

is defined as f(ω) = − 1

2

∑n

i=1
log(softmax(ω⊤xi +

b)) + λ

2
‖ω‖2, with a regularization parameter used in prior

work. We choose λ = 10, which makes the objective a

strongly convex function with M 6= 0. We use a learn-

ing rate of α = 0.001 for all settings. Since MNIST is

sparse and poorly conditioned, we measure the norm of

the gradient at each iteration to illustrate the convergence

of the algorithm. It is a metric that has been used for lo-

gistic regression on MNIST in previous work.(De Sa et al.,

2018)(Johnson & Zhang, 2013)

Image Classification For completeness, we also evaluate

the performance on a non-convex problem, namely image

classification on CIFAR-10 using a 16-layer VGG network.

Following prior works(Izmailov et al., 2018), we apply a

channel-wise normalization to make the values in each

channel have zero mean and unit variance.

5.2. Mixed-Precision Training in the Parameter Server

In this experiment, we evaluate performance of mixed-

precision training in a Parameter Server architecture.

Specifically, we launch 8 workers and 1 parameter server

and run the logistic regression. We evenly split the dataset

onto all the workers. We let all the workers train with full

precision but quantize the intermediate results before push-

ing them to the centralized node. The parameters stored on
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Figure 3. Results of Logistic Regression on MNIST Under Different Quantized Communication Policy in Parameter Server Architec-

ture
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Figure 4. Results of Logistic Regression on MNIST Under Different Quantized Communication Policy in Decentralized Ring Archi-

tecture
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centralized node is in full precision, i.e. 32 bits. We set

communication frequency to be 1 push/pull per iteration.

We train the model for 100 epochs.

The main results are shown in Figure 3. As is shown in the

figure, we can quantize all the intermediate results to 4 bits

and still maintain the statistical results from the baseline.

Since with each epoch, we iterate over all the training set

on all the workers. Approximately, using 4-bit can save

bandwidth up to 87.5%. We summarize the test accuracy

and average gradient norm after 100 epochs in Table 2.

5.3. Partially Low-Precision Communication Among

Workers

Inspired by QSGD (Alistarh et al., 2017), we employ more

relaxations on consistency among workers in a distributed

training task. Unlike the widely adopted All-to-All commu-

nication paradigm, we let workers communicate to a part of

the network with low-precision numbers.

In this experiment, we evaluate the performance of a low-

precision communication scheme in a decentralized archi-

tecture. Specifically, we launch 8 workers and organize

them in a ring network, i.e. all the workers have two neigh-

boring workers. We let all the workers train with full preci-

sion but communicate with low-precision numbers. We set

the communication frequency to be 1 average with neigh-

bors per iteration.

In logistic regression, we train the model for 100 epochs.

Results from logistic regression are shown in Figure 4. As

shown in the figure, we can quantize all the communica-

tion to 4 bits and still maintain the statistical results from

the baseline. One thing to notice is that, unlike Parame-

ter Server architecture, where all the workers reach con-

sensus immediately in one iteration by a centralized node,

ring network relaxes that requirement and allows workers

to have staled consensus. Compared to results from Param-

eter Server, we obtain that even if consensus among work-

ers is delayed, we still get convergence with quantized in-

termediate results.

In image classification, we train the model for 150 epochs.

Results from image classification are shown in Figure 5.

Similar to the results in logistic regression, in image clas-

sification we can quantize all the communication to 6 bits

and still maintain the statistical results from the baseline.

5.4. Quantized Model

In this experiment, instead of communication, we quantize

the deep learning model in a Parameter Server architecture.

Specifically, we quantize all the parameters in the VGG net-

work along the training, i.e. quantizing the weights and

gradients after each iteration. We plot the test accuracy in

Table 1. We train the model for 150 epochs. We can see
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Figure 5. Results of Image Classification on CIFAR-10 Under Dif-

ferent Quantized Communication Policy in Decentralized Archi-

tecture
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Table 1. Results of Image Classification on CIFAR-10 Under Dif-

ferent Quantized Model in Parameter Server Architecture

BITS EPOCHS TEST ACCURACY

32 150 89.47%
16 150 89.46%
10 150 89.36%
8 150 89.15%
6 150 78.12%

Table 2. Test Accuracy and Avg. Gradient Norm after 100 epochs

(Results of Logistic Regression on MNIST Under Different Quan-

tized Communication Policy in Parameter Server Architecture)

BITS EPOCH TEST ACCURACY TEST GRAD NORM

16 100 92.35% 0.04468
10 100 92.34% 0.04538
8 100 92.33% 0.04591
6 100 92.34% 0.04493
4 100 92.33% 0.04518

that quantizing the parameters with 8 bits can still get us

the performance training with precision (From 89.47% to

89.15%). However, if we further reduce the precision to 6

bits, the accuracy tends to have a huge degradation (From

89.47% to 78.12%).

The main takeaway in this subsection is for a deep learning

problem, quantizing the model to extremely low precision

can no longer achieve state-of-the-art performance.

6. Conclusion

In this paper, we empirically evaluate the performance of

low-precision training in both centralized and decentral-

ized architecture. We investigate both the convex and non-

convex problems. We observe that, 1) For both convex and

non-convex problems, aggressively quantizing the commu-

nication rarely affect the statistical performance while can

largely reduce the communication overhead (up to 87.5%).

2) In non-convex problem, training with extremely low pre-

cision can no longer achieve state-of-the-art performance.

For future work, one can theoretical investigate how low-

precision computation and low-communciation affect each

other in distributed training.
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