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Context: Deterministic Temporal Networks

" Edges are labeled: time at which it’s available
= Certainly appear in labeled timeslots
= Does not appear in other timeslots
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Question: What is the behavior of a non-deterministic
temporal networks?

" Encode uncertainty into the network by giving each edge a
probability of being "available" during each time slot
PTN(G,p) : G1,Gs,...,Gy, ...,

G = (V, E), underlying directed graph
p, probability
Cij:i+j, traveling cost; c¢;;, stalling cost

Gt — (VtaEt) G G, G, G3 Gy
Y YOy



Routing Problem in PTN:
s ->t with smallest total expected cost (traveling & stalling)

» Take Available Shortest Path policy (TASP)

)
argminges,, l(v) + Ciy if v € E; such that [(v) + ¢;,, is finite

7 otherwise
.

= Always Wait Policy (AW)

v if Jv’ € E; such that c;, + 1(v") = 1(7))

) otherwise



Optimal Routing Policy

" Expected Cost Based Topological Order Exists IFF: 3

= Stalling cost <= traveling cost

e Crk < Cij:i#j v iaja keV

= Use DP to calculate the smallest expected
cost w, from each node v to the destination

Algorithm 1 Generating Optimal Routing Table

n Od e t 1. Set w[t] = 0, set w[v] = oo forallv e Vv #t
2: flag=1
3. while flag =1 do
" Get w,, correct for at least one more node . flag=0
. . for all v € V do
each iteration ] e et el o D PO O Sy ey v P

2 0eN (), cvatwle]<cun+wlv] £ (E)
if w'[v] < w[v] then

flag=1

® 2 @

= Policy: go to the available node with smallest
. . 9: w(v]  w'[v]
expected cost + traveling/stalling cost 10, roturn w




Simulation - k-degree random graph

= Stalling cost <= traveling cost instance
= TASP performs significantly worse
= AW is almost as good as OPT
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N = 100, k=3, iteration = 500, cost ~1 on k-degree random graph.



Simulation - k-degree random graph

= Stalling cost <= traveling cost instance

OPT out perform AW instance AW makes the same choices as OPT
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N =500, k=3, iteration = 500, cost ~1 on k-degree random graph.




Simulation — OPT when assumption violated

= Stalling cost NOT NECESSARILY <= traveling cost
= As a heuristic, "OPT” out performs AW

= Due to small-world property in k-deg random graph, the number of nodes does not
have a significant influence on the distribution of the sqrt(delay rate)
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N =500, p =0.9

N =30, p=0.1 N =30, p=0.9

k=3, iteration = 500, cost [1,5] on k-degree random graph.



Simulation — graph where AW Policy is bad

= AW Policy is good in general, but bad in this particular instance:

= All edge costs/stalling costs = 1, p is small
* The “broad way”
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Simulation — bad case for AW Policy

" When p gets large, AW policy becomes better:

* The advantage of the “broad way” is disappearing as p grows large
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Thank you!



