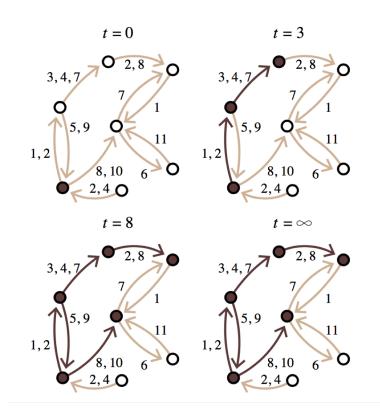


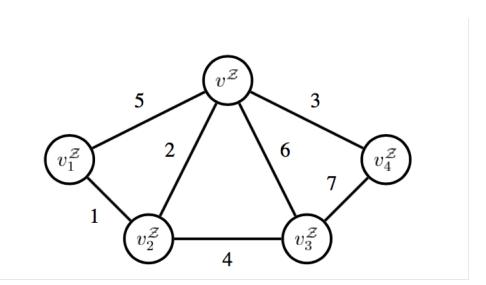
Analysis of Probabilistic Temporal Networks

Xiang Fu, Shangdi Yu

Context: Deterministic Temporal Networks

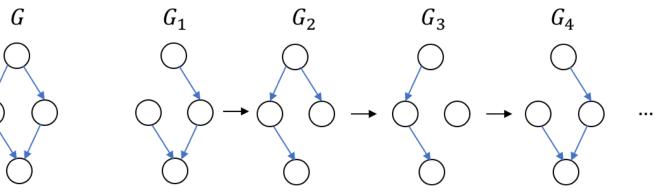
- Edges are labeled: time at which it's available
 - Certainly appear in labeled timeslots
 - Does not appear in other timeslots





Question: What is the behavior of a non-deterministic temporal networks?

- Encode uncertainty into the network by giving each edge a probability of being "available" during each time slot
- $PTN(G, p) : G_1, G_2, ..., G_t, ...,$ G = (V, E), underlying directed graph p, probability $c_{ij:i \neq j}, \text{ traveling cost}; c_{ii}, \text{ stalling cost}$ $G_t = (V_t, E_t)$



Routing Problem in PTN: s -> t with smallest total expected cost (traveling & stalling)

Take Available Shortest Path policy (TASP)

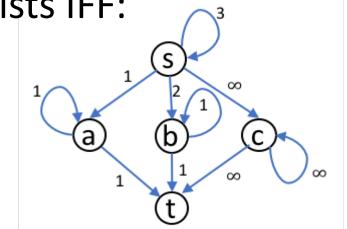
$$v^* = \begin{cases} argmin_{v \in S_{it}} l(v) + c_{iv} & \text{if } \exists v \in E_t \text{ such that } l(v) + c_{iv} \text{ is finite} \\ i & \text{otherwise} \end{cases}$$

Always Wait Policy (AW)

$$v^* = \begin{cases} v' & \text{if } \exists v' \in E_t \text{ such that } c_{iv} + l(v') = l(i)) \\ i & \text{otherwise} \end{cases}$$

Optimal Routing Policy

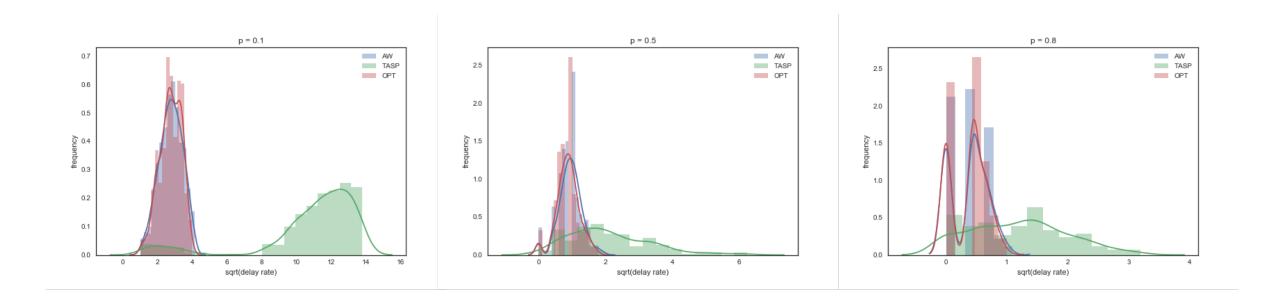
- Expected Cost Based Topological Order Exists IFF:
 - Stalling cost <= traveling cost</p>
 - i.e. $c_{kk} \leq c_{ij:i\neq j} \ \forall \ i, j, k \in V$
- Use DP to calculate the smallest expected cost w_v from each node v to the destination node t
- Get w_v correct for at least one more node each iteration
- Policy: go to the available node with smallest expected cost + traveling/stalling cost



Algo	rithm 1 Generating Optimal Routing Table
1: Se	et w[t] = 0, set w[v] = ∞ for all $v \in V, v \neq t$
2: fi	lag = 1
3: w	thile $flag = 1$ do
4:	flag = 0
5:	for all $v \in V$ do
6:	$w'[v] \leftarrow \frac{\sum_{x \in N(v), c_{vx} + w[x] < c_{vv} + w[v]}(c_{vx} + w[x])P(x) + (1 - \sum_{x \in N(v), c_{vx} + w[x] < c_{vv} + w[v]}P(x))c_{vv}}{\sum_{x \in N(v), c_{vx} + w[x] < c_{vv} + w[v]}P(x)}$
7:	if $w'[v] < w[v]$ then
8:	flag = 1
9:	$w[v] \leftarrow w'[v]$

Simulation - k-degree random graph

- Stalling cost <= traveling cost instance</p>
- TASP performs significantly worse
- AW is almost as good as OPT

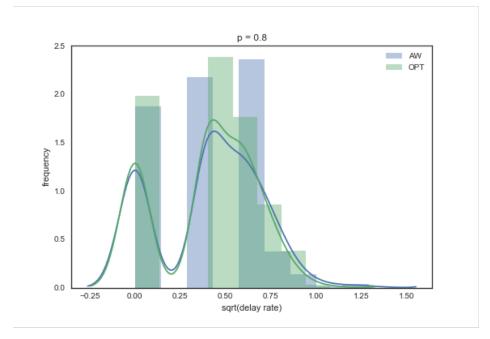


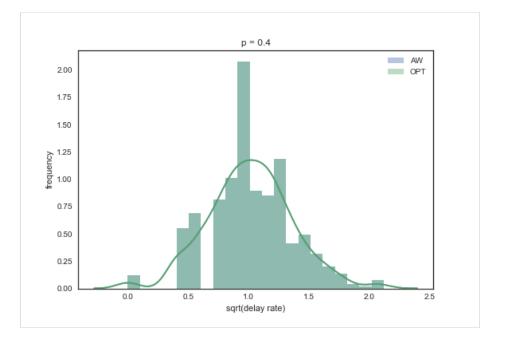
Simulation - k-degree random graph

Stalling cost <= traveling cost instance</p>

OPT out perform AW instance

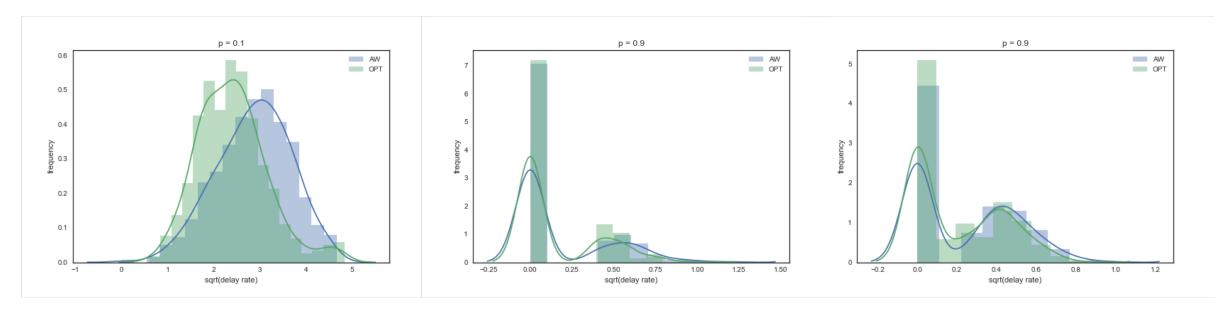
AW makes the same choices as OPT





Simulation – OPT when assumption violated

- Stalling cost NOT NECESSARILY <= traveling cost</p>
- As a heuristic, "OPT" out performs AW
- Due to small-world property in k-deg random graph, the number of nodes does not have a significant influence on the distribution of the sqrt(delay rate)

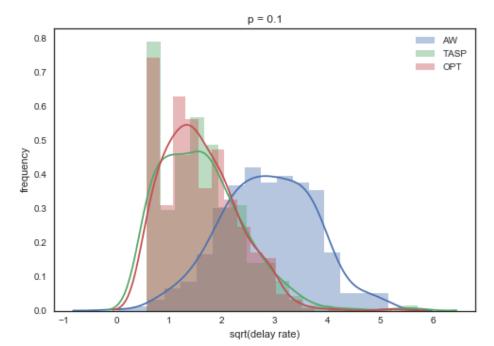


N = 30, p =0.1

Simulation – graph where AW Policy is bad

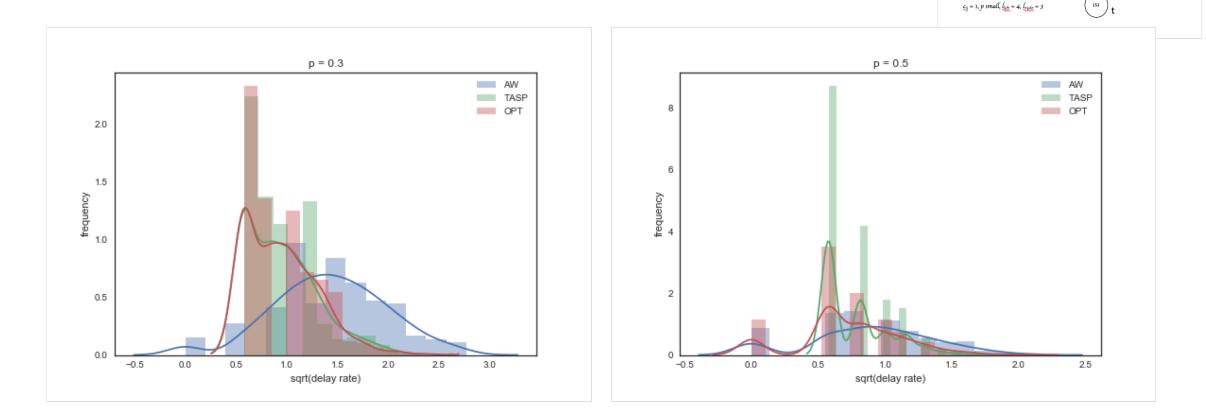
- AW Policy is good in general, but bad in this particular instance:
 - All edge costs/stalling costs = 1, p is small





Simulation – bad case for AW Policy

- When p gets large, AW policy becomes better:
 - The advantage of the "broad way" is disappearing as p grows large



Bibliography

- P. Holme. Network reachability of real-world contact sequences.
- David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. pages 504–513, 2000.
- Thanks to Professor Chris De Sa who suggested using stochastic dynamic programming

Thank you!