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Abstract

Models and algorithms for routing in networks have been studied in a number of domains, such as transportation

systems, computer networks, and telecommunication. In this paper, we propose the Probabilistic Temporal Network

(PTN) model, which is a non-deterministic network model that encodes the uncertainty of connections in the network.

We show that a stochastic dynamic programming routing strategy is optimal, evaluate the performance of this routing

algorithm, and show that the algorithm out-performs two other baseline heuristic algorithms.

I. INTRODUCTION

Uncertainties in connections between nodes are common in real-life networks. For example, in a transportation

system, the roads between two locations might be temporarily blocked due to maintenance or inclement weather

conditions; or in a computer network, the connection between two servers might be unstable; or in a social network,

diseases spread depending on the occurrence of the wide spreading regime [5]. Naturally, routing in networks should

take these uncertainties in the networks into consideration, just like a driver avoids taking a path consisting of roads

that has high probability of being closed. However, considering uncertainty is challenging because then we are

unsure about the exact network topology we will face when we make the routing decisions for the future. In this

paper, we encode the uncertainty into our network and propose the probabilistic temporal network (PTN), where

each edge has a probability of being ”available” during each time slot. We consider the routing problem in a PTN,

where the goal is to minimize the expected total cost from a given starting node to a given destination node. In

Section II, we give the details of the PTN model. Section III includes the optimal routing algorithm in a PTN and

Section IV introduces two heuristic routing algorithms. We will prove that in expectation, the proposed optimal

policy gives a path with the smallest cost between two nodes. The details of the proof are in the appendix. In

section V, we describes the empirical comparisons of the performances of the optimal policy and the two heuristics.

II. RELATED WORK

A key advantage of graph models is its ability to encode interactions between its nodes using the edges. Thus, it

is not surprising that the ”reach-ability” between nodes in networks has long been an interest of many researchers.

People have been developing different measures for the reach-ability between nodes, evaluating the reach-ability in

the real-life networks, and finding routing policies and algorithms between nodes.

For example, Holme [1] studied the network reach-ability of real-world contact sequences on Internet communica-

tions and explored how fast can information, or disease, spread across an empirical contact network and how much
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of the network can be reached from one vertex through a series of contacts. The model we propose in this reaction

paper also considers how fast one can reach from one node to another in time-relevant networks. Our problem

is different, though, in that the availability of the edges in our model is not deterministic and we are considering

a single time-respecting path between two given nodes. In other words, unlike the transmission of information

or diseases where the object being transmitted can have several copies, the object of our transmission has only

one copy and cannot be split. Analysis of other variants of temporal networks also exists in the literature. Kempe

et al. [2] studied two groups of problems on temporal networks: connectivity problems and inference problems.

Employing the concept of subdivision and topological minor, the paper specifies a group of graphs in which

Menger’s Theorem holds and gives a maximum set of disjoint time-respecting paths between node pairs in these

graphs. It also introduces an algorithm that reconstructs a partially specified time labeling of a temporal network.

Scholtes et al. [4] studied the higher-order measures that better capture the temporal centralities of nodes. Saramäki

and Holme [3] studied the correlations between timings of node and link activations in temporal networks using

temporal greedy walks to explore the temporal network structure.

In this paper, we focus on the routing in temporal networks and aim to answer the question of how many time

slots do we need to reach the destination node d from the starting node s using only available edges in each time

slot in a probabilistic temporal network. While such problem can be solved efficiently with Dijkstra’s algorithm

or Bellman-Ford algorithm in deterministic graphs, they are not suitable for the temporal graphs because of the

uncertainties. We will solve the problem using a variant of stochastic dynamic programming.

III. MODEL DESCRIPTION

The PTN is a probabilistic network model with temporal dynamic. We define the directed underlying graph G =

(V,E) and the connection probability function p : E ×N→ [0, 1], where p(e, i) is the probability of edge e being

”available” at time slot i. Then the probabilistic temporal network, PTN(G, p) is a sequence of directed graph:

G1, G2, ..., Gi, ..., where each Gi = (Vi, Ei) in time slot i is generated independently by letting Vi = V , and for

each edge e ∈ E, e ∈ Ei with probability p(e, i). We say edge e is available at time slot i if e ∈ Ei. A simple

example of PTN is given below.

Figure 1: A simple example of the probabilistic temporal network.

We are interested in the routing problem under the following settings: Assuming there exists a path from s to d

in the underlying graph. we start from node s and we want to get node d. At each time slot, we are only able to

travel through one available edge or stay unmoved. For example, assume now we are at node x in graph Gi, and
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we have edge (x, y) ∈ Ei. If we decide to move from node x to node y during time slot i, then in time slot i+ 1,

we will be at node y in the graph Gi+1. In other words, we are only able to move to a subset of nodes Sxi in time

slot i where Sxi = {v : (x, v) ∈ Ei}, given we are at node i in time slot i. We are also allowed to stay unmoved

at node x. After we make the routing decision, there is a traveling cost cvw ≥ 0 incurred if we travel on the edge

(v, w) and a stalling cost cvv ≥ 0 incurred if we do not move and stay at the node v for one time slot. Another

way to think of stalling is by adding a self loop edge (v, v) for each node v 6= d that shows up at every time slot

and the cost for that edge is cvv . The traveling/stalling costs are incurred in each time slot and add up cumulatively

as we travel through the networks.

With pdet(e, i) = 1,∀e ∈ E, i ∈ N, the PTN is just a deterministic directed graph with edge costs. In this case,

the optimal routing problem is just the shortest path problem in a directed graph, which can be solved efficiently

with Dijkstra’s algorithm or Bellman-Ford algorithm. The routing problem becomes much more complicated when

p 6= pdet.

Assuming in the underlying graph G = (V,E), there exists a path from s to d. Then in the probabilistic temporal

network, we can get d from s for some total cost T . Consider the shortest s− d path P in the underlying graph G

given by Dijkstra, we will have in the probabilistic temporal network, T ≥
∑
e∈P ce. Let T ∗ =

∑
e∈P ce, which

is actually the minimum total traveling cost from s to d. Note that d includes not only the traveling costs, but also

the stalling costs. Given some routing policy A, we can compute the expected total cost TA under this policy. We

define the delay ratio as TA

T .

For routing in a PTN, we might not be able to take the shortest path in every time slot as the graph is changing

in each time slot and the edge for the shortest path may not be available in the time slot we need to take it. We

can either stall and pay the stalling cost cvv or we can change our route to some path that is not the shortest. If

we change our route and deviate from the optimal path in the underlying graph, we will end up taking a longer

path and pay extra traveling costs; however, if we stick to the shortest path in the underlying graph and wait

for the edges in the path to be available, we need to pay the stalling cost. There is no way to know in advance

which edges will be available in the future time slots, so we have to face this trade off. Since we do not know the

exact total cost from s to d before we finish our route, we can only estimate the cost of different routes. We are

interested in finding good routing policies in order to minimize the expected total cost for getting node d from node s.

IV. OPTIMAL ROUTING ALGORITHM

A. Algorithm Description

The optimal routing policy minimize the expected total cost to travel from node s to node d. We define w(v) to

be the expected total cost under the optimal routing policy to travel from node v to node d.

The optimal routing algorithm is optimal based on following assumption:
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Table I: Notation

NOTATION MEANING

s STARTING NODE

d DESTINATION NODE

TA TOTAL COST OF GETTING FROM s TO d IN A PTN USING POLICY A

T ∗ MINIMUM TOTAL COST OF GETTING FROM s TO d IN A PTN

G(V,E) GRAPH WITH NODES V AND EDGES E

p(e, i) PROBABILITY OF EDGE e BEING ”AVAILABLE” AT TIME SLOT i.

Sxi = {v : (x, v) ∈ Ei} THE SET OF REACHABLE NEIGHBORS OF x AT TIME SLOT i.

cvw COST OF TAKING EDGE (v, w) .

cvv COST OF STAYING AT NODE v FOR A TIME SLOT.

P PATH

N(v) NEIGHBORS OF NODE v

w(v) THE EXPECTED TOTAL COST UNDER THE OPTIMAL ROUTING POLICY TO TRAVEL FROM

NODE v TO THE DESTINATION NODE d.

P (x) THE PROBABILITY THAT WE WILL GO FROM CURRENT NODE TO NODE x IN THE NEXT

TIME SLOT.

Assumption 1.

cvv ≤ cxy,∀v, x, y ∈ V, x 6= y

That is, all stalling costs are less than or equal to the minimum traveling cost.

Only when this assumption holds, does the graph has a topological order in terms of w. That is, when this assumption

holds, in the optimal routing policy, a node v with w(v) and neighbor N(v) will only want to go to nodes with

smaller w values. This makes the dynamic program approach feasible: the value of w(v) only depends on the values

of w’s for other nodes that are smaller than w(v). We also have w(d) = 0 as the base case.

In the following analysis, we will assume that 1 always holds. For the simplicity of the analysis, without loss of

generality, we assume p(e, i) = p,∀e ∈ E, i ∈ N. That is, all edges have the same probability to be available in all

time slots. The optimal routing policy works as the following and we will prove the correctness of this algorithm

in the next section.

Say in some time slot i we are at node v, the routing policy will give the next node we will be at in time slot i+1.

We will check the possible destination in the graph Gi. We will only want to go to node with smaller (expected

total cost to d + cost(v to that node)) than (expected total cost from v to d + cost(stalling at v)) from node v

otherwise we would rater stay at node v. And we will always want to go the the node with smallest (expected total

cost to d + cost(v to that node)) if that edge is available in Gi. That is, among all the possible destinations for node

v in time slot i (always includes node v itself), we will always choose the node x with smallest w(x) + cvx as the

node we will be at in time slot i+1. There is an example later that further explain the routing algorithm. Now we
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can formulate the following stochastic dynamic programming algorithm 1 to calculate w(v) for all v ∈ V with the

input to be the underlying graph G. For the simplicity of our algorithm, we define the following notations:

• Define N(v) = {x : (v, x) ∈ E and x 6= v}: x ∈ N(v) if x 6= v and there is a directed edge (v, x) in E . N(v)

is just the possible destinations for node v (other than staying at v).

• Say we are at node v in the current time slot and we are moving under the optimal routing policy, denote

P (x) as the probability that v will go to node x. Note that the probability that we will stay at v is just

P (v) = 1−
∑
x∈N(v),cvx+w[x]<cvv+w[v] P (x).

For example, for the underlying graph G in the following figure 2, if we are currently at the node s and we are

trying to go to node d, we will have N(s) = {a, b, c}. Also we can stay at node s. For all possible destinations for

s, sort all the nodes according to (the expected total cost from that node to d + cost(s to that node)), we will have

a < b < s < c. So when we are at node s, we will never want to go to node c. If the edge (s, a) is available, we

will always want to go to node a. if the edge (s, a) is not available and the edge (s, b) is available, we will always

want to go to node b. If both edge (s, a) and edge (s, b) are not available, we will just stay at node s as we will

never want to go to node c.

In this case, we have:

P (a) = P(edge (s,a) available) = p

P (b) = P(edge (s,a) not available and edge (s,b) available)

= P((s,a) not available)P((s,b) available) = (1− p)p

P (v) = P(stay at node v) = 1−
∑

x∈N(v),cvx+w[x]<cvv+w[v]

P (x) = 1− p− p(1− p)

So according to our routing policy, we can get the expected total cost from node s to node d, w(s), by solving the

equation:

w(s) = p(w(a) + 1) + p(1− p)(w(b) + 2) + (1− p− p(1− p))(w(s) + 3)

In general for any node v, we can solve for w(v) by solving the equation:

w(v) =
∑

x∈N(v),cvx+w(x)<cvv+w(v)

(cvx + w(x))P (x) + (1−
∑

x∈N(v),cvx+w(x)<cvv+w(v)

P (x))(cvv + w(v))

which gives:

w(v) =

∑
x∈N(v),cvx+w(x)<cvv+w(v)(cvx + w(x))P (x) + (1−

∑
x∈N(v),cvx+w(x)<cvv+w(v) P (x))cvv∑

x∈N(v),cvx+w(x)<cvv+w(v) P (x)

And we will be able to solve for w(a) and w(b) following the similar procedure. Note the expected total cost from

node d to node d is just 0. That is, w(d) = 0.

After we calculate w(v) for all node v ∈ V , we can make routing decision according to the policy stated above:

Among all the available destinations(including the current node itself), we always go to the node with the smallest

expected total cost(w value).
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Figure 2: An example underlying graph. The traveling cost/stalling cost is marked along each edge.

It’s not hard to notice that, in order to calculate w(v) correctly for some node v, we will need to know the set:

{x ∈ N(v), cvx+ w(x) < cvv + w(v)}. How can we know this set before we know w(v)? In order to solve this

problem we will use the dynamic programming algorithm 1, in which we initialize w(d) = 0 and w(v) = ∞ for

all v ∈ V, v 6= d, and then keep updating w for every node according to the formula given above. If w(v) doesn’t

change for all nodes v ∈ V , we have w converged. We then stop the algorithm and output w, which is the correct

expected total cost under optimal policy for each v ∈ V . We will prove that this algorithm will converge within

finite iterations and prove the correctness of this algorithm in the next section.

Algorithm 1 Generating Optimal Routing Table

1: Set w[d] = 0, set w[v] = ∞ for all v ∈ V, v 6= t

2: flag = 1

3: while flag do

4: flag = 0

5: for all v ∈ V do

6: w′[v]←
∑

x∈N(v),cvx+w[x]<cvv+w[v](cvx+w[x])P (x)+(1−
∑

x∈N(v),cvx+w[x]<cvv+w[v] P (x))cvv∑
x∈N(v),cvx+w[x]<cvv+w[v] P (x)

7: if w′[v] < w[v] then

8: flag = 1

9: w[v]← w′[v]

10: return w

B. Algorithm Correctness

We give the full details of proofs in the appendix, and only sketch the construction here.

Lemma 1. Given the policy: In any time slot i and node v, among all the available destinations ({v, x : (v, x) ∈

Ei} ∩ (N(v) ∪ {v})), we select the node x with the smallest sum of edge cost and w value to be the node we will
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be at in time slot (i+ 1). We claim that our algorithm calculates the expected value under this policy and we will

not move to any of the nodes {xlarge : w(xlarge) + cvxlarge
≥ w(v) + cvv} in the next time slot under this policy.

Lemma 2. We say w(v) correct if it is indeed the expected cost under the policy we described above. We claim

our algorithm gives the (i+ 1)th smallest w(v) to node v in ith iteration(starting from iteration 0). And if we fail

to calculate the correct w value for some node v, we must have overestimated it.

Lemma 3. We won’t change the w label of a node if we have labeled it correctly.

Lemma 4. Calculate the expected cost from each node to d under this policy gives w(v) for all node v ∈ V, v 6= d:

the smallest expected total cost from each node v ∈ V to the destination node d. (Optimality of our routing

algorithm.)

Theorem 1. The optimal routing algorithm gives the routing policy with smallest expected total cost and finishes

in O(n) steps.

Proof. We show if the algorithm is correct, the algorithm terminates in finite time. By Lemma 2, we will get one

node correct at each step. By Lemma 4, we won’t change the label of a node if the node has been labeled with

the true w(v). As a result, in each step, the number of nodes labeled correctly will increase by at least 1. Since we

have n nodes, in at most n steps, we will have correctly labeled all nodes.

Correspondingly in Algorithm 1 line 7-9, we only change flag to 1 if we update the label of a node. After we

correctly labeled all nodes, in the next iteration, the condition in line 3 ”while flag = 1” does not hold. The algorithm

converges and thus stops. At this time, all nodes are labeled with the true w(v). By definition, all nodes are labeled

with the smallest expected cost to go from this node to the destination node d. Then we can prove by induction

that this routing algorithm is indeed optimal.

V. HEURISTIC ROUTING ALGORITHMS

For a routing policy A, we say the expected total cost using the routing policy A is TA. And we say the Delay of

policy A is TA−T ∗. So even the optimal routing policy for the problem will have positive delay if p < 1. We start by

analyzing the following heuristic policies to investigate the routing behavior of the probabilistic temporal network.

We define l(v) to be the total cost(length) of the shortest path from v to d and l(v) =∞ if there doesn’t exist a path

from v to d. Say at time slot i, we are at node x, and we have the available destinations Sxd = {v : (a, v) ∈ Ei}

to move to or we can stall.
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A. Take Available Shortest Path policy (TASP)

Under the Take Available Shortest Path policy, we will stall only when Sxd = ∅ or ∀v ∈ Sxd, d is not reachable

by v. We will move to node v∗ where:

v∗ =

argminv∈Sxd
l(v) + cxv if ∃v ∈ Ei such that l(v) + cxv is finite

x otherwise

Under this policy, we try our best to avoid stalling.

B. Always Wait policy (AW)

Under the Always Wait policy, we will always stall when we are not able to take a shortest path in the underlying

graph G. The next node v∗ to go to (”go to” the current node itself if stall) is given by the expression:

v∗ =

v′ if ∃v′ ∈ Ei such that cxv + l(v′) = l(x))

x otherwise

Under this policy, we will always keep stalling if we are not able to take a shortest path in the underlying

graph. If there exists unique shortest path in the underlying graph, we will have the number of stall under

this policy follows a negative binomial distribution: say the there are q edges on the shortest path form s to

d, number of stall = NB(q, 1−p). So the expected number of stall is just (1−p)q
p . So the expected delay is (1−p)qξ

p .

VI. SIMULATION RESULT

We simulated the two heuristics(AW and TSAP) and the optimal algorithm on random k-degree graphs with different

parameters. The result of simulation shows that our optimal algorithm consistently performs well in different graphs.

Simulation also shows that when assumption 1 does not hold, our policy still serves as a good heuristic.

Though the AW policy performs well in the random k-degree graphs, this is not necessarily the case in other graphs.

We will show below by giving an example that the AW policy will perform extremely bad in some graphs.

For all simulations, we test each algorithm on 500 random graphs. Let D be the cost of the shortest path in the

underlying graph, and D′ be the actual cost to go from s to t in one simulation iteration. We define the delay rate

as d = (D′ −D)/D. The x-axis of the graphs is
√
d. The y-axis are the frequency of the delay rates out of 500

iterations per policy.

In our simulations on k-degree random graphs, the AW performs really well. We think its due the following reasons:

• According to the assumption we make, the ”stalling cost” is relatively small. The AW policy takes advantage

from this assumption as AW policy only pay extra stalling cost and never pay extra traveling cost.

• The k-degree random graphs have small-world property, so there tends to be a very short path from the source

node d the destination node. As we can observe in a lot of cases OPT even makes the same decisions as the

AW policy.
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• OPT guarantees smallest expected cost, but the variance can be very high according to simulation. So when

the cost of self loops are very small, intuitively AW is a competitive policy A has very low variance, this is

the same result we get in simulation. The delay rate is bounded below by 0. Though the variance is large, for

OPT we cannot extrapolate to negative. So we observe that in some simulations AW policy even have slightly

better numbers than OPT.

OPT guarantees smallest expected cost, but the variance can be very high according to simulation. So when the

cost of self loops are very small, intuitively AW is a competitive policy and has very low variance, this is the same

result we get in simulation. The the cost of self loop is small, the OPT policy will have similar or even worse cost.

The delay rate is bounded below by 0. Though the variance is large, we cannot extrapolate to negative.

A. Algorithm Performance

In this section, we show that the performance of TASP in 3-degree random graphs is significantly worse than the

AW policy and the OPT policy. Let p denote the probability that an edge is available in a certain timeslot. For each

p = 0.1, 0.2, . . . , 0.8, 0.9, we run each of the three algorithms, TASP, AW, and OPT, on 500 randomly generated

3-degree graphs.

From the result of the simulation, we can see that when p is mall, TASP’s delay rates are significantly larger.

As p goes to 1, the distribution of the delay rates of TASP becomes more and more like that of the other two

policies. This means that when the edges are likely to be available, TASP will make similar decision as the other

two policies. This is what we expected because when p is large, the shortest path in the underlying graph is more

likely to be available; notice that AW policy will only take paths that are shortest in the underlying graph. (Figure

3)

Another noticeable pattern in Figure 3 is that the delay rates of the OPT and AW policy Are very similar. We will

show later that this is not always the case - in some graphs, AW policy will make very different decisions as the

OPT policy. Here, according to our simulation results, AW policy produces very similar delay rates as OPT does in

k-degree random graphs. We discussed the reason at the beginning of this section. In fact, it is even possible that

under some seeds, the AW will make exactly the same decision as OPT in all 500 randomly generated temporal

graphs. One example is Figure 4. The red(OPT) and blue(AW) areas overlap and show a color of purple.

Figure 5 are graphs that contain only AW and OPT policy. We exclude the TASP because we showed in 3 that

TASP has significantly larger delay rates. Removing TASP from the plots allows us to plot the delay rates of AW

and OPT more compactly. The plots in Figure 5 again show that AW has similar performance as OPT in k-degree

random graphs when our assumption 1 holds.
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Figure 3: AW, TASP, and OPT run on 500 3-degree random graphs. The number of nodes n is 100 and all edge

costs are 1. The probability of each edge p ∈ [0.1, 0.8]
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Figure 4: AW, TASP, and OPT run on 500 3-degree random graphs. The cost of each edge(except self-loops) is a

random number between 1 and 2. The cost of self-loops are between 1 and the minimum non-self-loop edge cost.

The number of nodes n is 500. The probability of each edge p ∈ [0.1, 0.8] seed = 666.
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Figure 5: AW and OPT run on 500 2-degree random graphs. The cost of each edge(except self-loops) is a random

number between 1 and 2. The cost of self-loops are between 1 and the minimum non-self-loop edge cost. The

number of nodes n is 100. The probability of each edge p ∈ [0.1, 0.8] seed = 5.
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B. PTN Instance that AW is bad

Figure 6: PTN Instance that AW Policy performs badly. All traveling/stalling cost = 1.

For a PTN with underlying graph as above. The AW policy, which performs pretty well in random k-degree graph

will perform really badly when p is small. Here in the graph there is a ”broad way” on the left with distance 4 to

the destination node d and a ”narrow way” of length 3 on the right to the destination node d. The AW policy will

always choose to take the left ”narrow way”.

Here, the ”broad way” contains 3 layers of nodes, each contains 50 nodes, all connected to every node in the next

layer; s can go to all 50 nodes in the first layer and ultimately the third layer can all go to the destination node.

On the ”borad way” the probability of stalling in each step is (1 − p)50, which is very small. While the ”narrow

way” is just one way, where the probability of stalling in each step is (1− p). So we can expect a lot of stalls on

the narrow way when p is small. Therefore, we can expect the AW policy performs badly in this PTN instance

when p is small. We have the following simulation results at Figure 7.

As we expected, when p is small, the AW policy has much larger delay rate than the optimal policy and the TASP

policy. As p increase, the gap between the AW policy and the other two policies narrows. Since the assumption 1

is satisfied, the optimal algorithm always performs well in this instance, no matter what p is.

C. OPT as a Heuristic when ”Self Loop Minimum” Assumption Fails

Our OPT algorithm requires that the ”stalling costs” cannot be larger than any ”traveling cost” as this requirement is

necessary for us to find a topological order and perform the stochastic dynamic programming algorithm. Neverthe-
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Figure 7: PTN Instance that AW Policy performs badly, graph as shown above. AW policy performs badly when

p is small.
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less, the result of our simulation shows that our OPT algorithm still performs relatively well when the assumption

is violated. As shown in Figure 8, our OPT algorithm produce smaller delay rates in general under all levels of p.

D. Distribution of
√

delay rate

Figure 9: AW and OPT run on 2000 3-degree 25-node random graphs. The cost of each edge(except self-loops)

is a random number between 1 and 2. The cost of self-loops are between 1 and the minimum non-self-loop edge

cost. The probability of each edge p ∈ [0.1, 0.3].

According to our simulation the result, the distribution of the square root of the delay rate on a k-degree random

graph is approximately normal when p is small.

VII. DISCUSSION

In this paper, we propose the PTN model, where in different time slots, edges are not always available. Each edge

is available in each time slot with a probability. This model captures the uncertainty in a lot of real-life networks:

such like ride-sharing network, information propagation network, and transportation network, etc. We investigate

the routing problem in PTNs. We propose two heuristic routing policies and an optimal routing policy. We prove

the optimality of the optimal routing policy when the assumption 1 holds. We run simulations on k-degree random

graphs and some special graphs with these 3 routing policies and get some insight into routing in PTNs.
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Figure 8: AW and OPT run on 500 3-degree random graphs. The cost of each edge(including self-loops) is a

random number between 1 and 5. The number of nodes n is 30. The probability of each edge p ∈ [0.1, 0.8]. Note

that assumption 1 is violated.
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Some future directions that extends our current work include: (1) running simulations on random graphs that do

not have the small world property; (2) developing an algorithm that finds the smallest expected cost of going from

one node to another when the ”stalling cost smallest” assumption does not hold; (3) investigating other problems

on probabilistic temporal networks, such as cascading problem. (4) Different probability models; for example, the

adjacency matrix can be modeled as a Markov Chain.
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APPENDIX A

PROOF

Lemma 1. Given the policy: In any time slot i and node v, among all the available destinations ({v, x : (v, x) ∈

Ei} ∩ (N(v) ∪ {v})), we select the node x with the smallest sum of edge cost and w value to be the node we will

be at in time slot (i+ 1). We claim that our algorithm calculates the expected value under this policy and we will

not move to any of the nodes {xlarge : w(xlarge) + cvxlarge
≥ w(v) + cvv} in the next time slot under this policy.

Proof. First, we define

Nlarge(v) = {xlarge : w(xlarge) + cvxlarge
≥ w(v) + cvv, (v, xlarge) ∈ E},
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Nsmall(v) = {xsmall : w(xsmall) + cvxsmall
< w(v) + cvv, (v, xsmall) ∈ E}.

Esmall := the set of events that at least one of the edges {(v, xsmall)} is available.

Elarge := the set of events that none of those edges is available.

A = Esmall ∪ Elarge. Notice that P(A)=1 since the two events are the complement of each other.

Let Ea be the edges available in event a ∈ A.

w(v) =
∑
a∈A

P (a) ∗min(v,x)∈Eaw(x) + cvx

=
∑

a∈Esmall

P (a) ∗min(v,x)∈Eacvx + w(x) +
∑

a∈Elarge

P (a) ∗min(v,x)∈Eacvx + w(x)

Claim. For each node v ∈ V , we have∑
a∈Esmall

P (a) ∗min(v,x)+cvx)∈Eaw(x) + (1−
∑
a∈Esmall

P (a)) ∗ cvv∑
a∈Esmall

P (a)

Note that according to Assumption 1, we have the inequality w(xlarge) + cvxlarge
≥ w(v) + cvv always holds. and

under our policy we always go to the available node with the smallest sum of cost and w value. So according to

the inequality above, when events in Elarge happens, we always stay at the current node. Then we have:

w(v) =
∑

a∈Esmall

P (a) ∗min(v,x)∈Ea(cvx + w(x)) +
∑

a∈Elarge

P (a) ∗ (cvv + w(v))

=
∑

a∈Esmall

P (a) ∗min(v,x)∈Ea(cvx + w(x)) + (1−
∑

a∈Esmall

P (a)) ∗ (cvv + w(v))

=
∑

a∈Esmall

P (a) ∗ (min(v,x))∈Ea(w(x) + cvx) + (1−
∑

a∈Esmall

P (a)) ∗ (w(v) + cvv)

=

∑
a∈Esmall

P (a) ∗min(v,x)+cvx)∈Eaw(x) + (1−
∑
a∈Esmall

P (a)) ∗ cvv∑
a∈Esmall

P (a)

This is exactly the recurrence we used in our algorithm.

Since w(xsmall)+ cvxsmall
< w(v)+ cvv ≤ w(xlarge)+ cvxlarge

, we know min(v,x)∈Eaw(x)+ cvx) 6= w(xlarge)+

cvxlarge
∀xlarge.

So when an edge to xsmall is available, we won’t take any of xlarge. And when none of the edges to xsmall is

available, we will take the self loop. Thus, our policy will only go to nodes that has has smaller minimum expected

value. So under this policy, we will not move to any of the nodes {xlarge : w(xlarge) + cvxlarge
≥ w(v) + cvv} in

the next time slot.

Lemma 2. We say w(v) correct if it is indeed the expected cost under the policy we described above. We claim

our algorithm gives the (i+ 1)th smallest w(v) to node v in ith iteration(starting from iteration 0). And if we fail

to calculate the correct w value for some node v, we must have overestimated it.
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Proof. By construction of our algorithm, the w values either decrease or stay the same at each iteration. By Lemma 1,

the recurrence equation we used in the algorithm calculates the correct w(v) value for node v at an iteration if all

w(x), where x : w(x) + c(v, x) < w(v) + c(v, v), have been calculated correctly at this iteration.

Lemma 3. We say w(v) correct if it is indeed the expected cost under the ”going to smallest” policy we described

above. We claim our algorithm gives the (i+ 1)th smallest w(v) to node v in ith iteration(starting from iteration

0). And if we fail to calculate the correct w value for some node v, we must have overestimated it.

Proof. We prove the correctness of this Lemma by showing the statement: P (i) = ”The (i+1)th smallest w(v) is

given to node v in ith iteration, where that value for a node x is:

w(x) =

∑
a∈Esmall

P (a) ∗min(v,x)+cvx)∈Eaw(x) + (1−
∑
a∈Esmall

P (a)) ∗ cvv∑
a∈Esmall

P (a)

. And if we fail to calculate the correct w value for some node v in ith iteration, we must have overestimated it.”

is true for all i = 0..n. We prove this by strong induction.

Inductive Hypothesis:

P (i) = ”The (i+ 1)th smallest w(v) is given to node v in ith iteration. If we fail to calculate the correct w value

for some node v in ith iteration, we must have overestimated it.” is true for all i = 0..k.

Base Case:

The base case when k = 0 is true because the 1st smallest w(v) is 0 where v is the destination node d. When we

reached destination node, we don’t need to pay the stalling cost anymore. In the initialization, we set w(d) = 0

explicitly. So in the 0th iteration, we have given the 1st smallest w(v) = 0 for v = d.

We initialize all other nodes’ w values to ∞ in iteration 0. So we must have either (1) correctly initialized w when

w is indeed ∞ or, (2) overestimated all the w values in iteration 0.

Case i = k + 1:

Suppose we are at node v in the current iteration. We sort all nodes according to w(vi)+c(x, vi), from the smallest

to the largest and get the sequence v1, v2, ..., vn.

By inductive hypothesis, we know that in kth iteration, we have labeled nodes v1, v2, ..., vk+1 correctly, where

w(v1) ≤ w(v2) ≤ ...w(vk) ≤ w(vk+1) ≤ w(vk+1). By Lemma 1, our routing algorithm will not move to any of

the nodes {x : c(vk+1, x) + w(x) ≥ c(vk+1, vk+1) + w(vk+1)}. This is equivalent of saying the value w(vk+1)

only depends on the nodes v1, v2, ..., vk and indeed our algorithm only uses the w values of these nodes when

calculating w(vk+1). So the (k+1)th smallest w(v) is calculated from the 1st...(k)th smallest w values, which by

inductive hypothesis are correct at this iteration. As a result, the w(vk+1) is correctly calculated at this iteration.

By inductive hypothesis, all w values that are not calculated correctly in previous iterations are over estimated. So

when we calculate w(x) =
∑

a∈Esmall
P (a)∗min(v,x)+cvx)∈Eaw(x)+(1−

∑
a∈Esmall

P (a))∗cvv∑
a∈Esmall

P (a) , the w values we used are
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either correct or overestimated. Since the probabilities are non negative, we either correctly calculate w(x) or also

overestimated w(x) in this iteration.

Lemma 4. We won’t change the label of a node if we have labeled it correctly.

Proof. By line 7-9 in the algorithm, we only update the label of a node if the new label is smaller than the current

label. As we showed in Lemma 3, we never underestimate the label of any node. So since every update we make

decrease the label and we never underestimate the label, we never change the label of a node if we have labeled

it correctly.

Lemma 5. Recall our routing policy: In some time slot i, say we are currently at node v 6= t, among all the

available destinations ({v, x : (v, x) ∈ Ei} ∩ (N(v) ∪ {v})), we select the node x with the smallest w(x) + cvx to

be the node we will be at in time slot (i+ 1).

Calculate the expected cost from each node to d under this policy gives w(v) for all node v ∈ V, v 6= d: the smallest

expected total cost from each node v ∈ V to the destination node d. (Optimality of our routing algorithm.)

Proof. We prove this claim by strong induction. Say the true smallest expected total cost from node v ∈ V to

node d is cs(v). We sort all nodes in V according to cs(v), from the smallest to the largest and get the sequence

v1, v2, ..., vn, where we actually know v1 = d. Then we just want to show: w(v) = cs(v) for all v ∈ V .

Base Case: We want to show w(v1) = cs(v1). This is true since we know v1 = d and we initialize w(d) = 0,

which is indeed true since if we are already at node d there is no cost to get node d.

Inductive Step: Inductive Hypothesis: w(vj) = cs(vj) for j = 1, ..., k. Want to show: w(vj) = cs(vj) for j =

1, ..., k + 1.

We have w(vj) = cs(vj) for j = 1, ..., k according to the inductive hypothesis. We are only left showing that

w(vk+1) = cs(vk+1).

According to Lemma 1, Lemma 3, when we are currently at node vk+1, we will not go to node v ∈ {vk+2, ..., vn}

in the next time slot, and thus (w(vk+1))doesn’t depend on these nodes. The value of w(vk+1) only depends

on w(v1), ..., w(vk). Without the loss of generality: Say in some time slot i, there are available destinations:

{x1, ..., xq} = {v, x : (v, x) ∈ Ei} ∩ (N(v) ∪ {v}) where x1, ..., xq are sorted according to the cvx+ w(x) value,

from the smallest to the largest. Then our policy will choose to go to x1.

We prove by contradiction that our policy gives the minimum expected cost.

Note that the expected cost from node v to node d E[v] = minx∈{availabledestination} c(v, x) = cs(x). Say if

our policy does not give the minimum expected cost in this case. there exists some destination xl 6= x1, where

1 < l ≤ q such that cvxl
+ cs(xl) < cvx1

+ cs(x1). According to our inductive hypothesis we have cs(xl) = w(xl)

and cs(x1) = w(x1). So we have cvxl
+ w(xl) < cvx1 + w(x1). But we know that x1, ..., xq are sorted according

to the cvx+ w(x) value, from the smallest to the largest. So we have a contradiction.

Then since our policy gives the minimum expected cost for every node in every possible temporal graph Gi, and
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we also know w(vj) = cs(vj) for j = 1, ..., k, we have w(vk+1) and the true smallest expected cost form node

vk+1 to node d is given by:

w(vk+1) = cs(vk+1) =

∑
x∈N(v),cvx+<cvv+w(v)(cvx + w(x))P (x) + (1−

∑
x∈N(v),cvx+w(x)<cvv+w(v) P (x))cvv∑

x∈N(v),cvx+w(x)<cvv+w(v) P (x)

.
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APPENDIX B

MEAN AND VARIANCE OF SIMULATION

Note: the mean and variance are the mean and variance of delay rate, not the mean and variance of the square-rooted

values.

Figure 3:

Mean Variance

p AW TASP OPT AW TASP OPT

0.1 8.09 127 7.94 13.1 2350 10.6

0.2 3.82 19.8 3.36 4.31 224 10.6

0.3 2.17 10.2 1.92 1.29 62.7 3.07

0.4 1.54 8.02 1.36 0.767 46.1 1.01

0.5 1.02 5.81 0.89 0.893 43.4 0.352

0.6 0.647 4.08 0.580 0.191 22.1 0.160

0.7 0.432 2.33 0.406 0.109 5.09 0.0952

0.8 0.240 2.04 0.220 0.0570 4.58 0.0454

0.9 0.106 4.37 0.0976 0.0247 36.2 0.0193

Table II: Simulation results for 500 iterations (mean and variance for delay rate) for k-degree random graph:

n = 100, k = 3, edge cost 1, seed = 5, p ranges from 0.1 to 0.9.

Figure 4:

Mean Variance

p AW TASP OPT AW TASP OPT

0.1 7.39 105 7.39 47.4 11600 47.4

0.2 3.11 67.1 3.11 14.0 7810 14.0

0.3 1.51 19.9 1.51 2.96 784 2.96

0.4 0.841 8.27 0.841 1.11 317 1.11

0.5 0.596 5.68 0.596 0.619 197 0.619

0.6 0.363 1.78 0.363 0.311 33.9 0.311

0.7 0.240 0.654 0.240 0.180 9.62 0.180

0.8 0.158 0.295 0.158 0.137 1.73 0.137

0.9 0.0703 0.0847 0.0703 0.0564 0.101 0.0564

Table III: Simulation results for 500 iterations (mean and variance for delay rate) for k-degree random graph:

n = 100, k = 3, cost ranges from 1 to 2, seed = 666, p ranges from 0.1 to 0.9.
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Figure 7

Mean Variance

p AW TASP OPT AW TASP OPT

0.1 9.04 3.30 3.024 26.9 12.8 7.32

0.2 3.47 1.68 1.624 5.35 2.23 1.87

0.3 2.34 1.02 1.00 2.53 0.632 0.586

0.4 1.51 0.785 0.810 1.09 0.337 0.329

0.5 1.02 0.661 0.692 0.698 0.208 0.361

0.6 0.647 0.587 0.523 0.321 0.166 0.237

0.7 0.421 0.483 0.347 0.189 0.0768 0.113

0.8 0.267 0.424 0.230 0.100 0.0460 0.0694

0.9 0.129 0.365 0.117 0.0468 0.0114 0.0364

Table IV: PTN Instance that AW policy performs badly

Figure 8

Mean Variance

p AW OPT AW OPT

0.1 8.88 6.34 20.5 16.6

0.2 7.07 5.04 18.8 8.64

0.3 3.48 2.48 7.26 2.40

0.4 2.61 1.52 2.78 1.47

0.5 1.50 1.35 1.26 1.44

0.6 0.917 0.848 0.564 0.627

0.7 0.437 0.354 0.165 0.136

0.8 0.257 0.208 0.0809 0.0741

0.9 0.108 0.0823 0.0428 0.0233

Table V: Simulation results for 500 iterations (mean and variance for delay rate) for k-degree random graph:

n = 30, k = 3, cost ranges from 1 to 5, seed = 94275, p ranges from 0.1 to 0.9.
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Figure 5

Mean Variance

p AW OPT AW OPT

0.1 7.21 6.72 8.31 8.18

0.2 2.77 2.53 1.25 1.01

0.3 1.71 1.35 0.537 0.372

0.4 0.878 0.836 0.209 0.182

0.5 0.597 0.573 0.107 0.0916

0.6 0.427 0.409 0.0716 0.0570

0.7 0.281 0.274 0.0427 0.0371

0.8 0.156 0.157 0.0182 0.0181

0.9 0.0692 0.0688 0.00727 0.00738

Table VI: Simulation results for 500 iterations (mean and variance for delay rate) for k-degree random graph:

n = 100, k = 2, cost range from 1 to 2, seed = 5, p range from 0.1 to 0.9.
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