
Gaussian Process Framework for Deep Neural Networks

Xiang Fu * 1 Shengyuan Hu * 1 Shangdi Yu * 1

Abstract
Recent work (Garriga-Alonso et al., 2018)
has shown deep convolutional neural networks
(DNNs) can be approximated by a shallow Gaus-
sian processes (GP) with much fewer parameters.
A lot of features in modern convolutional neural
network (CNN) have not been considered in this
work. In this paper, to extend the flexibility of
the transformation from modern neural network
architecture to shallow Gaussian process, a frame-
work for DNNs is introduced. An average pooling
operation and a concatenation operation are de-
rived to support densely-connection structures to
fit in Garriga-Alonso et al.’s architecture by trans-
forming them into simple matrix multiplication.
The newly derived DenseNet-GP significantly re-
duce the time for calculating the kernel matrix
for the GP while having comparable accuracy in
classifying images in CIFAR10.

1. Introduction
Recent development in deep learning has brought about
significant improvements in various machine learning tasks.
In particular, neural network and deep learning works well
in high dimensional data like images and has improved
accuracy on tasks like image classification. However, in
high dimensional data, the model is very easy to overfit
to the training data and can have high curvature locally.
Another model good at learning data distribution is Gaussian
process (GP). Recent advance in the scalability of Gaussian
process (Wilson & Nickisch, 2015) has enabled Gaussian
process to work on large scale machine learning task. While
Gaussian process is more likely to learn a smooth manifold
representation of the data, it is, however, is known to be bad
at learning high dimensional data like image.

In order to solve the problems in both models, the idea of
using Bayesian learning is proposed to combined with artifi-
cial neural network. Neal 1996 provided an extensive study

*Equal contribution 1Cornell University. Correspon-
dence to: Xiang Fu <xf74@cornell.edu>, Shengyuan Hu
<sh797@cornell.edu>, Shangdi Yu <sy543@cornell.edu>.

on such method and showed the Gaussian process behavior
of single layer neural network. Later works by Matthews
et al. 2018 extended this finding to the GP behavior in wide
deep neural network. These works provide an alternative
way to traditional neural network on image classification.
Instead of training the neural network using back propaga-
tion, we inference using the kernel with the parameters of
the network that fit the training data best. We will discuss in
the paper why this is appropriate and the benefits of kernel
inferences.

In a recent work by Garriga-Alonso et al. 2018, a shallow
Gaussian process representation of deep convolutional neu-
ral networks is proposed and proven valid by deriving the
kernel of the GP using the explicit mathematical formula of
the neural network with convolution and ReLU activation,
significantly reducing the parameters of the model com-
pared with the original deep neural network. However, in
practice, modern neural networks in computer vision have
features such as pooling, concatenation of feature-maps,
batch normalization, which have not had a counterpart in
the GP kernel that represents the neural network.

This work will focus on developing the transformation from
neural network techniques, specifically the average pooling
and the concatenation, to their counterparts in a shallow
GP kernel that represents the original neural network. We
will show in section 3.2 that adding an average pooling is
actually equivalent of adding one more modified convolu-
tional layer. The transformation of concatenation is more
involved and the details will be shown in section 3.3. We
implemented the two transformations in TensorFlow, the
framework that Garriga-Alonso et al. used. We have also
implemented the mirror version of this transformation from
Deep Neural Networks to Gaussian processes in PyTorch
using the GPyTorch framework (Gardner et al., 2018). 1

Specifically, we have rewritten the two main kernels - the
DeepKernel and the ResNetKernel. While rewriting the two
kernels, we have also implemented the elementwise ReLU
kernel and the elementwise Erf kernel. Our work produces
a flexible transformation from modern convolutional neural
networks with millions of parameters to a Gaussian process
with much fewer parameters. In section 4 we conduct experi-
ments on the MNIST and CIFAR10 to compare the accuracy

1https://github.com/yushangdi/GPDNN

Gaussian Process Framework for Deep Neural Networks

of our model with the average pooling operation and the
baseline model of Garriga-Alonso et al. to illustrate how
adding new features can influence the model performance
on both the accuracy and running time.

2. Background & Related Work
Our work combines two ideas that are drawing significant
attention in the machine learning community in the recent
decades, namely Gaussian processes and neural networks.
In this section, we will introduce the background of random
neural networks, Gaussian processes, and the literature that
study the relationship between the two. There are rich liter-
ature on both Gaussian processes (Rasmussen, 2006) and
DNN structures (Schmidhuber, 2014) as the two approaches
that both are very popular and shown to have competitive
performance in data inference in the recent years. The study
of the relationship between Gaussian processes and neural
networks has also dated back to two decades ago.

2.1. Convolutional Neural Networks

CNN is a variant of feed-forward artificial neural networks.
Let M be the number of basis functions and D be the number
of variables. The general form of neural network can be
written as

y(x,w) = f(

M∑
j=1

wjφj(x))

where φj(x) are the basis functions. Activation functions
h are chosen to transform activations at layer l a(l)j =∑D

i=1 w
(l)
ji xi +w

(l)
j0 to hidden units zj = h(aj). The output

unit activations a(l
′)

k =
∑M

j=1 w
(l′)
kj zi + w

(l′)
k0 . Output unit

activation can then be transformed to yk = σ(ak). Some
commonly used building blocks of CNN include convolu-
tional layers, pooling layers, and ReLU layers. (Bishop,
2006) Modern CNN architectures in image classification
like DenseNet (Huang et al., 2016) and Inception (Szegedy
et al., 2014) have achieved outstanding performance. How-
ever, these architectures suffer from 1) millions of train-
able parameters and 2) long time to train the model, even
when doing transfer learning with the pretrained version
of these models. Hence, it is of our great interests to find
few-parameter supplant to these neural networks while pre-
serving their flexibility and complexity.

2.2. Gaussian Process

On the other hand, Gaussian processes approach requires
only a few parameters and a relatively simple learning pro-
cedure with just matrix manipulations. In regression, we
have the predictive mean on testing point x∗ is

f̄∗ = kT∗ (K + σ2
nI)−1y

, and variance

V [f∗] = k(x∗, x∗)− kT∗ (K + σ2
nI)−1k∗

where K = K(X,X), k(x∗) = k∗. In multi-class classifi-
cation, we can use the softmax function

p(y = Ce|x,W) =
exp(xTwe)∑
e′ exp(x

Twe′)

. This gives the probability of label Ce of data point x given
weight matrix W . (Rasmussen, 2006)

2.3. Random Neural Networks as Gaussian processes

Researchers have have tried to uncover the relationship
between the two approaches and develop algorithms that
combine the Gaussian processes deep networks. For exam-
ple, Wilson, Hu, Salakhutdinov, and Xing (2016) created
deep kernels for Gaussian processes which combine deep
networks, spectral mixture covariance functions (Wilson &
Prescott Adams, 2013), and the above scalable GP methods.
(Wilson et al., 2016)

2.3.1. SINGLE HIDDEN LAYER MULTILAYER
PERCEPTRON

It has been known since long time that in the limit of an
infinite number of hidden units, the prior over functions pro-
duced by a single layer neural network tends to a Gaussian
process. (Williams, 1996; Neal, 1996)

To illustrate the idea of random neural networks, we use a
multilayer perceptron network with a single hidden layer
and infinite hidden units as an example. It has activation

hj(x) = tanh(aj +

I∑
i=1

)uijxi

and output

fk(x) = bk +

H∑
j=1

vjkhj(x).

Here, uij are the input-to-hidden weights, vij are the hidden-
to-output weights. aj are the biases of the hidden units and
bk are the biases of output units. I is the number of inputs
and H is the number of layers. Giving bk, vij , aj , uij zero
mean Gaussian prior with variances σb, σv, σa, σu respec-
tively and drawing the values randomly from their priors, the
resulting network is a random neural network. Neal (1996)
showed that a Gaussian prior for hidden-to-output weights
results in a Gaussian process (GP) prior for output functions.
This fact also holds for any bounded activation function,
i.i.d input-to-hidden weights and hidden unit biases, and
zero mean finite variance hidden-to-output weights priors.
(Neal, 1996)

Gaussian Process Framework for Deep Neural Networks

The prior distributions represent our prior belief of the
model. As we train the model with data, we update our
prior belief to obtain the posterior distribution and then use
the posterior for inference. When the number of hidden
units is large, the networks may overfit on small training
sets and perform poorly on testing sets. This problem can be
alleviated by using Bayesian learning because the Bayesian
approach allows us to spread our belief across a wide sup-
port. Using this Bayesian perspective, the predictive distri-
bution is given by (Neal, 1996) as follows:

P (y(n+1)|x(x+1), X, ~y) =∫
P (y(n+1)|x(x+1), θ)P (θ|X, ~y)dθ

and the mean of the predictive distribution is

ŷ
(n+1)
k =

∫
fk(x(n+1), θ)P (θ|X, ~y)dθ.

2.3.2. DEEP NEURAL NETWORKS

Though people have shown in theory a single hidden layer
network with many hidden units can approximate any func-
tion defined on a compact domain arbitrarily closely, (Cy-
benko, 1989; Funahashi, 1989; Hornik et al., 1989) a more
complex architecture can be advantageous in that more com-
plex architectures can encode our inductive biases better
into the networks and thus leads to better regression or clas-
sification results.

However, the relationship between Gaussian processes and
neural networks with more than a single layer is not as
well understood and is an active area of research. Recently
researchers have proved that conditioned on an infinite num-
ber of channels at each layer, deep and fully connected
neural networks do have a similar behavior as the single
layer neural networks in that they also tend to Gaussian
processes. (Matthews et al., 2018) Matthews et al. (2018)
further studied the relationship between Gaussian processes
with a recursive kernel definition and random wide fully con-
nected feed-forward networks with more than one hidden
layer. They showed that as the network becomes increas-
ingly wide the distribution of the marginal distributions of
the activations at each layer and of the output will become
close to a Gaussian process. (Matthews et al., 2018) They
proof this result by upper bounding how far each layer is
from a multivariate normal distribution using Berry-Esseen
inequality and then inductively propagating these inequali-
ties through the network. (Matthews et al., 2018)

While the works of (Matthews et al., 2018) on deep neural
networks significantly extended the work of Neal (1996),
these fully-connected networks are rarely used in image
classification tasks. In the next section, we will discuss the
equivalent GP representations state-of-the-art architectures

such as CNNs and ResNets (Garriga-Alonso et al., 2018)
and our extensions.

3. The GP Framework
3.1. Model Setup

To convert from a convolutional neural network to a Gaus-
sian process, we use the formulation and methodology intro-
duced in (Garriga-Alonso et al., 2018). Input X is an image
of size C(0) × (H(0)D(0)). We denote each channel as
x1, ...,xC(0) , flatten to form a vector. We use a linear trans-
formation as the first activation. So for j ∈ {1, ..., C(1)},
we have the first activiation:

a
(1)
j (X) = b

(0)
j +

C(0)∑
i=1

W
(0)
j,i xi

Define the activation function to be φ, activation vector
after `-th layer on j-th channel is φ(a

(`)
j (X)). The iterative

updates for a(`)j (X) is the following:

a
(`+1)
j (X) = b

(`)
j +

C(`)∑
i=1

W
(`)
j,i φ(a

(`)
i (X))

We denote the `th activation as A`. Consider the neural net-
work has L hidden layers, the output of the neural network
are the last activations A(L+1)(X). And for a regression or
classification task, we must have H(L+1) = D(L+1) = 1.

In the formulas above, we express the convolution operation
as matrix multiplication. We call the W matrix pseudo-
weights. It is shown in (Garriga-Alonso et al., 2018) how to
get W by transforming the original convolutional filter U .
This transformation does not involve non-linear operations.

The key assumptions needed to give a GP representation of
the above CNN are:

1. There are infinite number of filters (channels) in each
convolutional layers.

2. Each entry in the filters U (`)
j,i , and bias at each layer

b
(`)
j are independent Gaussian random variables. For

each layer `, channels j, i and locations within the filter
x, y:

U
(`)
j,i,x,y ∼ N (0, σ2

w/C
(`))

b
(`)
j ∼ N (0, σ2

b)

When both assumption holds, it is shown in (Garriga-Alonso
et al., 2018) that the behavior of such a CNN converges to
a GP. Now in terms of calculating the kernel matrix, The

Gaussian Process Framework for Deep Neural Networks

assumptions of infinite channels and all convolutional layers
sharing the same prior makes the computation for the kernel
matrix very complicated. However, for a classification or re-
gression task with a final dense layer, we only need the vari-
ance of the output. It has been proven in (Garriga-Alonso
et al., 2018) that this property propagate backwards and thus
we only need the diagonal covariance. Garriga-Alonso et al.
also proved that the covariances are independent of the out-
put channel j. Therefore, we can calculate the covariance
matrix in an iterative fashion, which is shown below:

Activations:

A
(`+1)
j,g (X) = b

(`)
j +

C(`)∑
i=1

H(`)D(`)∑
h=1

W
(`)
j,i,g,hφ(A

(`)
i,h(X))

Compute Covariance:

v(`+1)
g (X,X ′) = C[A

(`+1)
j,g (X), A

(`+1)
j,g (X ′)]

= σ2
b + σ2

w

∑
h∈gthpatch

s
(`)
h (X,X ′)

where:

s
(`)
h (X,X ′) = E[φ(A

(`+1)
i,h (X))φ(A

(`+1)
i,h (X ′))]

If we use the Rectified Linear Units (ReLU) activation as φ,
we would have:

s(`)g (X,X ′)

=

√
v
(`)
g (X,X)v

(`)
g (X ′, X ′)

π
(sin θ(`)g + (π − θ(`)g))

where:

θ(`)g = cos−1(v(`)g (X,X ′)/

√
v
(`)
g (X,X)v

(`)
g (X ′, X ′))

Now we have all the required components to give a GP rep-
resentation to the Vanilla CNNs. Given a GP classification
or regression task, we can compute the prediction and the
covariance matrix using the procedures described above.

3.2. Average Pooling

With the average pooling operation, we have the new rule
of updating a(`)j . The average pool could be treated as the
original feature map doing convolution with a fixed filter
of size a× b and stride a× b. Hence just like the convolu-
tion operation can be rewritten into matrix multiplication,
average pool could be represented by a matrix A (Figure 1)
and

a
(`+1)
j (X) = b

(`)
j +

C(`)∑
i=1

AW
(`)
j,i φ(a

(`)
i (X))

The feature-maps is thus given by

a
(`+1)
j (X,X ′) = b

(`)
j 1+

C(`)∑
i=1

[
AW

(`)
j,i 0

0 AW
(`)
j,i

]
φ(a

(`)
i (X))

The kernel recursion can be calculated correspondingly with
the same expression given in (Garriga-Alonso et al., 2018).
Note that W (`)

j,i is iid, A is a matrix that is invariant to each
layer. Hence, within one layer one can view A as a constant
matrix. Thus AW (`)

j,i is iid. Define W ∗(`)j,i = AW
(`)
j,i and

this would be the new weight of the matrix. Following the
proof of (Garriga-Alonso et al., 2018), adding average pool
preserves the fact that a(`+1)

j (X,X ′) and a(`+1)
j′ (X,X ′) are

iid for j 6= j′.

Figure 1. The 2x2 filter of average pooling on a 4x4 feature is con-
verted to be the matrix A and the feature is flattened. In this way,
the average pooling operation is represented by matrix multiplica-
tion between a sparse constant matrix and the feature

3.3. Concatenation Operations and Dense Blocks

Consider the ResNets architecture, which add a skip-
connection that bypasses the non-linear transformations
with an identity function. We denote the output of the `th

layer as x` and the non-linear transformation at layer ` as
H`(·). Then in Resnets, let s be the number of layers that
the skip connection spans. We will have the input for the
(`+ 1)th layer being:

x` = H`(x`−1) + x`−s

According to (Garriga-Alonso et al., 2018), in the GP frame-
work, to represent the bypassing operation in the GP frame-
work, we will have the NN recursion becomes:

a
(`+1)
j (X) = a

(`−s)
j (X) + b

(`)
j +

C(`)∑
i=1

W
(`)
j,i φ(a

(`)
i (X))

Gaussian Process Framework for Deep Neural Networks

And the kernel recursion becomes:

v(`+1)
g (X,X ′)

= v(`−s)g (X,X ′) + σ2
b + σ2

w

∑
h∈gthpatch

s(`)g (X,X ′)

Recall the expressions for activations and covariance matrix
in section 3.1, the bypassing operation is just using the sum
of the output of some previous layer A(`−s)

j (X) and the
output of the `th layer as the input to the (` + 1)th later.
Correspondingly we can get the formula for calculating the
kernel matrix.

Now we consider the concatenation operation for dense
connectivity. To achieve dense connection, the `th layer
receives the feature-maps of all preceding layers x0, ..., x`−1
as its input:

x` = H`([x0, x1, ..., x`−1])

Then correspondingly, in the GP representation, the NN
recursion becomes:

a
(`+1)
j (X) = b

(`)
j +

∑̀
y=0

C(y)∑
i=1

W
(y)
j,i φ(a

(y)
i (X))

The concatenation operation is analogous to the skipping
operation in (Garriga-Alonso et al., 2018): instead of adding
the output of one previous layer, we are summing up the
outputs of all previous layers in a densely connected block
and passing them into the activation function. We will have
the kernel recursion becomes:

v(`+1)
g (X,X ′) = σ2

b + σ2
w

∑̀
y=0

∑
h∈gthpatch

s
(y)
h (X,X ′)

Again, compare to a normal CNN model, when calculate
activations and covariance matrix, we need to consider the
output of all previous layers in the dense block. In terms of
activations, we need to sum over the feature-maps from all
previous layers and feed in the transformation function of
the current layer. For the covariance matrix, we alsp need to
sum over all image patches from all previous layers in the
densely connected block.

For CNN models, the advantage of dense connection is, it
can utilize the conditional information of previous layers to
make the current layer more expressive. Here we present
the new kernel recursion representing dense connection
in a neural networks. With the concatenation operation,
our framework can construct GP representations of more
complicated CNN architectures, and hopefully also exploit
the structural properties of the corresponding CNN model.

4. Experiments
All the experiments on MNIST and CIFAR-10 are run on 2
GeForce GTX 1080 GPUs.

Table 1. GP accuracy on different architecture

SETTING BASELINE WITH AVG.POOL

3 CONV LAYERS 96.2 95.87
6 CONV LAYERS 95.87 95.58
9 CONV LAYERS 95.82 95.48
12 CONV LAYERS 95.72 95.36
15 CONV LAYERS 95.48 95.18
18 CONV LAYERS 95.11 94.85

Table 2. GP run time on MNIST

SETTING VANILLA CONVNET

3 CONV LAYERS 157.17
6 CONV LAYERS 271.24
9 CONV LAYERS 392.96
12 CONV LAYERS 516.57
15 CONV LAYERS 632.11

4.1. MNIST

We run the experiments on MNIST classification task to
test our CNN with Average Pool performance against the
baseline implementation of Garriga-Alonso et al.. The result
is shown in Table 1, with different hyperparameters and
model architectures.

For the same number of layers, we compare the baseline
performance and the performance of the model after ran-
domly applying average pooling to 3 convolution layers.
We test it through different deep convolutional neural net-
work architectures. From the table we see the model with
average pooling performs slightly worse than the baseline.
Surprisingly, it could be discovered that as the number of
layers increases, the accuracy of the model drops for both
models. In (Garriga-Alonso et al., 2018), the author just
random search for the best solution but ignore systematic
experiment on how the number of layers as a hyperparam-
eter of the Gaussian Process effect the performance of the
classification task. This is an interesting finding because it
directly contradicts with the nature of deep convolutional
neural network where deeper architecture tends to produce
higher accuracy.

In terms of running time, the amount of time to compute the
covariance matrix and fit the data is much faster than the
amount of time used to train a convolutional neural network
counterpart.

4.2. CIFAR-10

We run the experiments on CIFAR10 classification task on
3 models:

Gaussian Process Framework for Deep Neural Networks

Table 3. GP accuracy on different architecture on CIFAR 10 in
percentage. From the first block to the third block, the number of
convolution layers is 26,38,50 respectively. Experiments on the
RBF kernel only runs for 10 epoch. We stopped running more
experiments using the RBF kernel due to the long running time.

SAMPLES CONVNET RESNET DENSENET RBF

1000 38.6 39.2 39.0 14.3
5000 50.9 49.8 49.7 -
25000 61.6 56.5 60.7 -

1000 39 39.9 40.1 -
5000 51.9 50.6 50.9 -
25000 63.4 61.4 62 -

1000 39.2 40.6 40.9 -
5000 51.5 50.5 50.2 -
25000 63.0 61.9 60.9 -

1. Vanilla ConvNet

2. ResNet

3. DenseNet

For the ResNet architecture, we built residual connection
between every 4 layers. For the DenseNet architecture, we
built dense block with 6 layers and all the layers inside one
block is densely connected. Between different blocks, we
apply convolution with strides [2,2]. For each of the three
models, we run the experiment with number of convolu-
tion layers to be 26, 38, 50. For each model configuration,
we run the model on 1000, 5000, 25000 training samples.
To evaluate the performance of the DenseNet Kernel, we
record the test accuracy on the test data and the time used
to compute the kernels. Since the model here untrainable,
the time required to fit the training data is equivalent to the
time to calculate the covariance matrix.

We report the result of our experiments on different archi-
tectures and different sample sizes in Table 2 and Table
3.

Figure 2 illustrates the relationship between number of train-
ing points and the testing accuracy of the model. From the
graph we see that given the number of layers of the neural
network, accuracy is a linear function of log(samples):

acc ≈ C(n)
1 log(samples)

for some constant C(n)
1 dependent on n. Figure 3 illustrates

the relationship between the number of training points and
the time needed to calculate the covariance matrix. We
can see the calculation time is approximately a quadratic
function of number of samples:

time ≈ C(n)
2 × samples

Table 4. GP running time on different architecture on CIFAR 10
in seconds. From the first block to the third block, the number of
convolution layers is 26,38,50 respectively. Experiments on the
RBF kernel only runs for 10 epoch. We stopped running more
experiments using the RBF kernel due to the long running time.

SAMPLES CONVNET RESNET DENSENET RBF

1000 98.13 108.47 120.57 5852.66
5000 519.49 390.21 407.99 -
25000 9316.94 2323.73 2327.48 -

1000 116.5 126.77 177.95 -
5000 718.21 529.16 588.85 -
25000 13253.51 8700 8580.55 -

1000 135.24 150.85 250.51 -
5000 920.61 675.59 794.19 -
25000 17324.06 11554.01 12381.11 -

for some constant C(n)
2 dependent on n.

Compare the accuracy of any specific model given the num-
ber of training samples, we see that the effect of accuracy
inverse proportional to number of layers disappear in this
case. However, unlike traditional deep neural network, it
stays true that in our Gaussian process representation of
deep convolutional neural network, the depth of the network
is not directly related to the accuracy of the model.

From Figure 2, we see that when the sample number is large,
ConvNet architecture results in a slightly higher accuracy
than ResNet and DenseNet in all three variants. However,
when the sample number is small, the contrary happens -
ConvNet architecture results in a slightly lower accuracy.
When layer is 26, DenseNet gives a higher accuracy than
ResNet, but in other two variants, these two have very sim-
ilar accuracy. From Figure 3, we see that ConvNet has a
significantly longer running time than the other two archi-
tectures. ResNet and DenseNet have similar running time
with DenseNet slightly slower. So we see that there is a
trade-off between accuracy and speed. The significantly
longer running time of ConvNet does not buy us much extra
accuracy.

We also compared deep convolutional neural network ker-
nel with the RBF kernel and trained the RBF kernel on
1000 samples. We stopped at 10 epochs and evaluated the
accuracy and run time and it turns out RBF kernel gives
much lower accuracy than deep convolutional neural net-
work kernel (14.3%) and much higher time for fitting the
data (5852.66 s). This is due to the fact that RBF kernel
actually needs to be trained while deep convolutional neural
network kernel doesn’t. Due to the long time of training,
incompetitive testing accuracy, and limited computational
power, we stopped training on RBF kernels with more itera-

Gaussian Process Framework for Deep Neural Networks

Figure 2. number of training samples versus classification accuracy on test set on vanilla ConvNet, ResNet, and DenseNet. Left: models
with 26 conv layers; Middle: models with 38 conv layers; Right: models with 50 conv layers. From the graph we see that all three models
have similar accuracy rate on classification. The vanilla CNN-GP works slightly better than DenseNet-GP slightly better than ResNet-GP

Figure 3. number of training samples versus time to calculate the covariance matrix on vanilla ConvNet, ResNet, and DenseNet. Left:
models with 26 conv layers; Middle: models with 38 conv layers; Right: models with 50 conv layers. It can be seen from the graph that it
takes much longer for the vanilla convolutional neural network GP to compute its covariance matrix than ResNet and DenseNet GP do
as number of samples increase drastically. The dotted line here in every graph represents an quadratic formula that approximates the
changing trend of running time in terms of number of training samples.

tions and more data.

5. Conclusion
We derived the expression of the Average Pooling operation,
and we finished the implementation of the Average Pooling
operation with the original Tensorflow implementation. We
incorporated the Average Pooling operation into the baseline
model and compared the performance of our model with
the baseline. The accuracy of the models with the pooling
operation (95.87%) is very similar to the model without
the pooling operation (96.2%) on MNIST. Although that
is lower than the state-of-the-art model performance, the
time needed to fit the data to our model is much faster than
training a convolutional neural network counterpart.

We also derived the expression of the concatenation opera-
tion, which enabled us to derive the GP representation of
dense block (Huang et al., 2016). We implemented a GP
representation for the densely connected CNN architecture
with the TensorFlow implementation. We run experiments
on the Vanilla CNN kernel GP, ResNets kernel GP, and the
DenseNets kernel GP with different number of layers and

different amount of input data. Experiments are run on
the CIFAR-10 dataset. We evaluated the performance and
run time of each model. We observe that the testing accu-
racy grow approximately linearly relative to log(samples).
Models with different number of layers and different struc-
tures have similar performance: around 62% accuracy with
25, 000 images being the training input. However, com-
pared with vanilla CNN kernel GP, ResNet kernel GP and
DenseNet kernel GP takes much shorter amount of time in
fitting the data to the model especially on large number of
training points: approximately on average 4000 5000 sec-
onds faster while achieving similar testing accuracy. Hence,
the DenseNet kernel is more competitive than the vanilla
CNN kernel in terms of overall performance.

On CIFAR-10 dataset, the deep convolutional neural net-
work kernel runs much faster than RBF kernel, about 48
times faster, with 1000 training points. Meanwhile, the ac-
curacy of the RBF kernel is much worse than that of deep
convolutional neural network kernel.

Gaussian Process Framework for Deep Neural Networks

6. Discussion
6.1. Inducing point method failed

We finished the implementation of the framework with Py-
Torch and GPyTorch. To be specific, we implemented the
deep kernel and ResNets kernel used in Garriga-Alonso et al.
and tested its behaviour. The kernels gave the same kernel
matrices as the original TensorFlow implementation with
the random inputs. We are able to do GP classification with
the GPyTorch GP model. The previous objective of this
project was to incorporate scalable GP methods, such as
the inducing point method with KISS-GP into our model.
However, it is impossible to use popular inducing point
based scalable GP methods, because the kernel of the GP
representation of a CNN is not stationary, i.e. K(X,X ′)
for any two data points X and X ′ cannot be expressed as a
function of X −X ′. Note that v(1)g (X,X ′) can be written
as m(1)

g (XTX ′) for some function m(1)
g and v(l+1)

g (X,X ′)
can be written as a function with elements in v(l)(X,X ′).
Hence, every v(l)g (X,X ′) can be written as m(l)

g (XTX ′)

for some m(l)
g . Works done by Scholkopf & Smola 2001

has shown that dot-product kernel is a better choice than
stationary kernel on image classification tasks with inputs in
[−1, 1]. Therefore we still use the TensorFlow implementa-
tion on this dot-product kernel for running our experiments.
However, the GP model built with GPyTorch is more flexi-
ble and easier to configure.

6.2. Untrainable nature of the model

The authors of the original paper chose their hyperparamers
using a random search approach - randomly drawing hyper-
parameter samples and picking set of hyperparameters with
the highest accuracy on validation set. With the GPyTorch
implementation, it is possible to train the model. But the
GP representation of a CNN is a model that does not need
training, since training the model will break the assumptions
needed for GP behaviours. The key assumption of the model
is the entries of all the convolutional filters are identically
independently distributed Gaussian random variables. If
we train the model, the backpropagation step will break the
independence of the filter weights between layers.

6.3. Incongruent to neural networks depth behaviour

In the experiments with the MNIST dataset and Vanilla
CNN Gaussian processes, the behavior that the model with
less number of layers having better performance might be
related to the fact that the model itself is confident in the
classification task. However, this behavior disappear on
experiments with the CIFAR-10 dataset, where the model
has greater uncertainty. However, more interestingly, while
it’s well known that deeper neural networks gives better
accuracy, this deep convolutional neural network kernel GP

doesn’t behave in the same way. The number of layers
doesn’t seem to have a direct correlation with the accuracy
of classification on more complex and uncertain datasets.
We can expect that we will also not be able to observe better
performance with shallower network on CIFAR-100 and
ImageNet. Because in these datasets, the model would not
capture the distribution of the dataset as well as it did on
MNIST.

7. Future Work
In this section, we describe some of the future works that can
be extended from this paper. First, one can run experiments
on larger and more complex datasets, such as ImageNet, to
better understand the behavior of the Gaussian processes
framework for Deep Neural Networks.

To make the framework more flexible, one can also develop
more kernels for different activation functions. Besides
the ArcCosine kernel, which is a natural counterpart to the
ReLU activation function, one can derive kernels which are
counterparts for other activation functions such as Exponen-
tial Linear Units (ELUs) and sigmoid.

8. Acknowledgement
We would like to thank Jacob R. Gardner and Geoff Pleiss
for helping on GPytorch issues.

We would like to thank to Pavel Izmailov for his advice on
the project.

References
Bishop, C. M. Pattern Recognition and Machine Learning.

Springer, 2006.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and
Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X. doi:
10.1007/BF02551274. URL https://doi.org/10.
1007/BF02551274.

Funahashi, K.-I. On the approximate realization of
continuous mappings by neural networks. Neural
Networks, 2(3):183 – 192, 1989. ISSN 0893-6080. doi:
https://doi.org/10.1016/0893-6080(89)90003-8. URL
http://www.sciencedirect.com/science/
article/pii/0893608089900038.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q.,
and Wilson, A. G. Gpytorch: Blackbox matrix-matrix
gaussian process inference with gpu acceleration. In
NeurIPS, 2018.

Garriga-Alonso, A., Aitchison, L., and Rasmussen, C. E.

https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://www.sciencedirect.com/science/article/pii/0893608089900038
http://www.sciencedirect.com/science/article/pii/0893608089900038

Gaussian Process Framework for Deep Neural Networks

Deep Convolutional Networks as shallow Gaussian Pro-
cesses. ArXiv e-prints, August 2018.

Hornik, K., Stinchcombe, M. B., and White, H. Multi-
layer feedforward networks are universal approximators.
Neural Networks, 2:359–366, 1989.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely Connected Convolutional Networks. ArXiv
e-prints, August 2016.

Matthews, A. G. d. G., Rowland, M., Hron, J., Turner, R. E.,
and Ghahramani, Z. Gaussian Process Behaviour in Wide
Deep Neural Networks. ArXiv e-prints, April 2018.

Neal, R. M. Bayesian learning for neural networks.
Springer-Verlag, 1996.

Rasmussen, C. E. Gaussian processes for machine learning.
MIT Press, 2006.

Schmidhuber, J. Deep learning in neural networks: An
overview. CoRR, abs/1404.7828, 2014. URL http:
//arxiv.org/abs/1404.7828.

Scholkopf, B. and Smola, A. J. Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. MIT Press, Cambridge, MA, USA, 2001.
ISBN 0262194759.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going Deeper with Convolutions. ArXiv e-prints,
September 2014.

Williams, C. Computing with infinite networks. In Advances
in Neural Information Processing Systems 9, pp. 295–301.
MIT Press, 1996.

Wilson, A. G. and Nickisch, H. Kernel Interpolation
for Scalable Structured Gaussian Processes (KISS-GP).
ArXiv e-prints, March 2015.

Wilson, A. G. and Prescott Adams, R. Gaussian Process
Kernels for Pattern Discovery and Extrapolation. ArXiv
e-prints, February 2013.

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing, E. P.
Stochastic variational deep kernel learning. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 29, pp. 2586–2594. Curran Associates, Inc., 2016.

http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828

