Rebalancin

Stations

CONSTRUCTING A GRASP ALGORITHM TO OPTIMALLY REALLOCATE BIKES

Ellen Chen, Shangdi Yu, Daniel Freund, David B. Shmoys

INTRODUCTION

* Maintaining a successful bike-sharing
system involves constant rebalancing tasks
throughout the day.

» Customers move bikes around system
* Asymmetric demands

* Truck drivers must reallocate bikes so there
are available bikes and opens docks at
every station.

« We improved the effectiveness of a truck’s
rebalancing tasks by using a GRASP
algorithm to search for near-optimal
solutions for bike reallocation.

GRASP ALGORITHMS

* A GRASP (greedy randomized adaptive
search procedure) is a metaheuristic
algorithm for optimization problem:s.

* Algorithm Steps:

* Run greedy randomized algorithm to
construct base solution
* Use local search to improve each solution.

° Run many iterations and choose the best
solution found

USER DISSATISFACTION FUNCTIONS (UDF)

* Our greedy heuristic was constructed
around UDFs.

* There is a unique UDF for every bike station
at every half hour interval.

SAMPLE RESULTS

 Qur GRASP Greedy GRASP
demonstrated Case 11 360.21 385.08
Improvements in Case 9° 25953 272.80
compa rison to a (Case 3: 350.67 374.63

simple greedy
algorithm.

* These histogram show how the algorithm
improves over increased iterations.

0.14

0.12

0.06

0.1
0.08 0,04
0.06
0.04 0.02

0.02

900

0

410

250 Iterations

SYSTEM IMPLEMENTATION

publishTime publishDateTime

420 430 440 450 460 470 390 400 410 420 430 440 450 460

500 Iterations

210 430 440 450 460

1000 Iterations

ction viID tType tName
eeeeeeeeeeee

ction viD tType tName publishTime publishDateTime

ee

ee

ee

null

eee

p Bike W 31St&7Ave 20 Low null null 1 null null null null 2017-10-15 12:41
-00-00 00:00:00
ﬁl:]I ey 1200 A
null null nul I 2017-10-15 12:41

6 6 Pickup Bike W 11St&6 Ave 7 Low null null 0
11 Truck2

ee

23 name, d
D [T)
D “D. 9 3 Drop Bike E33St&2Ave 20 Low null null 1 null null null
10 4 Pick up Bike E12St&3Ave 20 Low null null [} null null null
i

Tx

nn

Dlspatcher Slde

Name
v | | Tables (20)

ALGORITHM APPROACH

* Greedy Heuristic:

* Using the UDFs, we found C, the optimal number
of bikes that should be at every station at the
current time.

* Calculate the time, T, it would take to drive to
each station, and move the appropriate number
of bikes from or to the station.

* The optimality of each task was ranked by the

C
value of;

* Randomization Method:
* Retrieve the best 5 moves defined by the greedy
heuristic
* Weigh each task as 2™, where n is equal to%

* Use a random weighted selection to chose from
the top-5 tasks.

* Our implementation ran ~10 iterations per
minute on a system with >660 stations and 4
trucks.

INTERFACE DESIGN

We created a web and mobile application to
implement and visualize the algorithm and assign
tasks.

* Web app features for dispatchers

* Customize algorithm inputs

* Modify the existing schedule and the schedule
generated by the algorithm

* Create tasks for the algorithm to assign.

* Set stations as forbidden.

* Schedule breaks for drivers

* Track/manage vehicles/ stations/ tasks

* Mobile app features for rebalancers
* Update vehicle and driver information

» | | Breaks
» | | ClosedForbiddenStations

* A UDF for station X at time T maps each
value in [0, n], where n is the total number
of docks at X, to a value C.

* Crepresents the expected number of
customers unable to pick up/drop off a
bike in the next hours given that there are
currently X bikes at the station.

» | | ClosedForbiddenStationsTemp
» | | ClosedTasks

» | | DeletedTasks

» | | Drivers

» | | DriversShift

» | | ForbiddenStations

» | | ForbiddenStationsTemp
» | | OpenTasks

» | | OpenTasksTemp

» | | PriorityCode

» | | ReasonCode

» | | ShiftHist

» | | Stations

» | | Tasks

» | | TempTasks

> = Users

nnnnnnnnn

Database

Task Type: Drop Bike
Bike number: 30

* Accept/ Reject/ Report complete tasks

Bikes 10 Broken Bikes 0

| Sesina * Begin/ End shifts

Drivers' ID's aal23 bb123| -E.E.!pt Tlme. 2017 10 15 12 53 51

ACKNOWLEDGEMENT
e v e e
e 10 T " This work was supported by the National Science
- Foundation under grant CCF-1522054 and would

not have been possible without the Citi Bike research
: roup at Cornell University and the many people at
Rebalancer Side JrouUp Y Y P

Motivate International.

