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CONSTRUCTING A GRASP ALGORITHM TO OPTIMALLY REALLOCATE BIKES
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INTRODUCTION

* Maintaining a successful bike-sharing
system involves constant rebalancing tasks
throughout the day.

» Customers move bikes around system
* Asymmetric demands

* Truck drivers must reallocate bikes so there
are available bikes and opens docks at
every station.

« We improved the effectiveness of a truck’s
rebalancing tasks by using a GRASP
algorithm to search for near-optimal
solutions for bike reallocation.

GRASP ALGORITHMS

* A GRASP (greedy randomized adaptive
search procedure) is a metaheuristic
algorithm for optimization problem:s.

* Algorithm Steps:

* Run greedy randomized algorithm to
construct base solution
* Use local search to improve each solution.

° Run many iterations and choose the best
solution found

USER DISSATISFACTION FUNCTIONS (UDF)

* Our greedy heuristic was constructed
around UDFs.

* There is a unique UDF for every bike station
at every half hour interval.

SAMPLE RESULTS

 Qur GRASP Greedy GRASP
demonstrated Case 11 360.21 385.08
Improvements in Case 9° 25953 272.80
compa rison to a (Case 3: 350.67 374.63

simple greedy
algorithm.

* These histogram show how the algorithm
improves over increased iterations.
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SYSTEM IMPLEMENTATION
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ALGORITHM APPROACH

* Greedy Heuristic:

* Using the UDFs, we found C, the optimal number
of bikes that should be at every station at the
current time.

* Calculate the time, T, it would take to drive to
each station, and move the appropriate number
of bikes from or to the station.

* The optimality of each task was ranked by the

C
value of;

* Randomization Method:
* Retrieve the best 5 moves defined by the greedy
heuristic
* Weigh each task as 2™, where n is equal to%

* Use a random weighted selection to chose from
the top-5 tasks.

* Our implementation ran ~10 iterations per
minute on a system with >660 stations and 4
trucks.

INTERFACE DESIGN

We created a web and mobile application to
implement and visualize the algorithm and assign
tasks.

* Web app features for dispatchers

* Customize algorithm inputs

* Modify the existing schedule and the schedule
generated by the algorithm

* Create tasks for the algorithm to assign.

* Set stations as forbidden.

* Schedule breaks for drivers

* Track/manage vehicles/ stations/ tasks

* Mobile app features for rebalancers
* Update vehicle and driver information

» | | Breaks
» | | ClosedForbiddenStations

* A UDF for station X at time T maps each
value in [0, n], where n is the total number
of docks at X, to a value C.

* Crepresents the expected number of
customers unable to pick up/drop off a
bike in the next hours given that there are
currently X bikes at the station.
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Database

Task Type: Drop Bike
Bike number: 30

* Accept/ Reject/ Report complete tasks

Bikes 10 Broken Bikes 0

| Sesina * Begin/ End shifts

Drivers' ID's aal23 bb123| -E.E.!pt Tlme. 2017 10 15 12 53 51
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